Skip to main content
Log in

Memristor-induced mode transitions and extreme multistability in a map-based neuron model

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Because of the advent of discrete memristor, memristor effect in discrete map has become the important subject deserving discussion. To this end, this paper constructs a memristor-based neuron model considering magnetic induction by combining an existing map-based neuron model and a discrete memristor with absolute value memductance. Taking the coupling strength and initial state of the memristor as variables, complex mode transition behaviors induced by the introduced memristor are disclosed using numerical methods, including spiking-bursting behaviors, mode transition behaviors, and hyperchaotic spiking behaviors. In particular, all of these behaviors are greatly dependent on the memristor initial state, resulting in the existence of extreme multistability in the memristive neuron model. Therefore, this memristive neuron model can be used to effectively imitate the magnetic induction effects when complex mode transition behaviors appear in the neuronal action potential. Besides, a hardware platform based on FPGA is developed for implementing the memristive neuron model and various spiking-bursting sequences are experimentally captured therein. The results show that when biophysical memory effect is present, the memristive neuron model can better represent the firing activities of biological neurons than the original map-based neuron model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Rose, R. M., Hindmarsh, J. L.: The assembly of ionic currents in a thalamic neuron I The three-dimensional model. Proc R Soc. Lond. B Biol Sci. 237(1288), 267–288 (1989)

  2. Gu, H., Pan, B., Chen, G., Duan, L.: Biological experimental demonstration of bifurcations from bursting to spiking predicted by theoretical models. Nonlinear Dyn. 78(1), 391–407 (2014)

    Google Scholar 

  3. Chua, L.O.: If it’s pinched it’s a memristor. Semicond. Sci. Technol. 29(10), 104001 (2014)

    Google Scholar 

  4. Chen, M., Sun, M., Bao, H., Hu, Y., Bao, B.: Flux-charge analysis of two-memristor-based Chua’s circuit: dimensionality decreasing model for detecting extreme multistability. IEEE Trans. Ind. Electron. 67(3), 2197–2206 (2020)

    Google Scholar 

  5. Corinto, F., Forti, M.: Memristor circuits: bifurcations without parameters. IEEE Trans. Circuits Syst. I Reg. Pap. 64(6), 1540−1551 (2017)

  6. Hu, X., Liu, C.: Dynamic property analysis and circuit implementation of simplified memristive Hodgkin–Huxley neuron model. Nonlinear Dyn. 97(2), 1721–1733 (2019)

    MATH  Google Scholar 

  7. Parastesh, F., Rajagopal, K., Karthikeyan, A., Alsaedi, A., Hayat, T., Pham, V.-T.: Complex dynamics of a neuron model with discontinuous magnetic induction and exposed to external radiation. Cogn. Neurodyn. 12, 607–614 (2018)

    Google Scholar 

  8. Xu, F., Zhang, J., Fang, T., Huang, S., Wang, M.: Synchronous dynamics in neural system coupled with memristive synapse. Nonlinear Dyn. 92(3), 1395–1402 (2018)

    Google Scholar 

  9. Usha, K., Subha, P.A.: Hindmarsh–Rose neuron model with memristors. Biosystems 178, 1–9 (2019)

    MATH  Google Scholar 

  10. Sah, M.P., Kim, H., Chua, L.O.: Brains are made of memristors. IEEE Circuits Syst. Mag. 14(1), 12–36 (2014)

    Google Scholar 

  11. Ma, J., Yang, Z., Yang, L., Tang, J: A physical view of computational neurodynamics. J. Zhejiang Univ. Sci. A Appl. Phys. Eng. 20(9), 639–659 (2019)

  12. Li, K., Bao, H., Li, H., Ma, J., Hua, Z., Bao, B.: Memristive Rulkov neuron model with magnetic induction effects. IEEE Trans. Ind. Inf. 18(3), 1726–1736 (2022)

    Google Scholar 

  13. Ma, J., Tang, J.: A review for dynamics in neuron and neuronal network. Nonlinear Dyn. 89(3), 1569–1578 (2017)

    Google Scholar 

  14. Izhikevich, E.M.: Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. MIT Press, Cambridge (2010)

    Google Scholar 

  15. Xu, F., Zhang, J., Fang, T., Huang, S., Wang, M.: Synchronous dynamics in neural system coupled with memristive synapse. Nonlinear Dyn. 92, 1395–1402 (2018)

    Google Scholar 

  16. Ma, J., Mi, L., Zhou, P., Xu, Y., Hayat, T.: Phase synchronization between two neurons induced by coupling of electromagnetic field. Appl. Math. Comput. 307, 321–328 (2017)

    MATH  Google Scholar 

  17. Ge, M., Jia, Y., Xu, Y., Yang, L.: Mode transition in electrical activities of neuron driven by high and low frequency stimulus in the presence of electromagnetic induction and radiation. Nonlinear Dyn. 91, 515–523 (2018)

    Google Scholar 

  18. Bao, H., Hua, Z., Liu, W., Bao, B.: Discrete memristive neuron model and its interspike interval-encoded application in image encryption. Sci. China Technol. Sci. 64(10), 2281–2291 (2021)

    Google Scholar 

  19. Hu, X., Feng, G., Duan, S., Liu, L.: A memristive multilayer cellular neural network with applications to image processing. IEEE Trans. Neural Netw. Learn. Syst. 28(8), 1889–1901 (2017)

    Google Scholar 

  20. Mondal, A., Upadhyay, R.K., Ma, J., Yadav, B.K., Sharma, S.K., Mondal, A.: Bifurcation analysis and diverse firing activities of a modified excitable neuron model. Cogn. Neurodyn. 13(4), 393–407 (2019)

    Google Scholar 

  21. Rajamani, V., Kim, H., Chua, L.: Morris–Lecar model of third-order barnacle muscle fiber is made of volatile memristors. Sci. China Inf. Sci. 61(6), 060426 (2018)

    Google Scholar 

  22. Bao, B., Zhu, Y., Ma, J., Bao, H., Wu, H., Chen, M.: Memristive neuron model with an adapting synapse and its hardware experiments. Sci. China Technol. Sci. 64(5), 1107–1117 (2021)

    Google Scholar 

  23. Xu, Q., Ju, Z., Ding, S., Feng, C., Chen, M., Bao, B.: Electromagnetic induction effects on electrical activity within a memristive Wilson neuron model. Cogn. Neurodyn. 16, 1221–1231 (2022)

    Google Scholar 

  24. Xu, Y., Ma, J.: Pattern formation in a thermosensitive neural network. Commun. Nonlinear Sci. Numer. Simul. 111, 106426 (2022)

    MATH  Google Scholar 

  25. Shilnikov, A.L., Rulkov, N.F.: Subthreshold oscillations in a map-based neuron model. Phys. Lett. A 328(2–3), 177–184 (2004)

    MATH  Google Scholar 

  26. Bashkirtseva, I., Nasyrova, V., Ryashko, L.: Stochastic spiking-bursting excitability and transition to chaos in a discrete-time neuron model. Int. J. Bifurc. Chaos 30(10), 2050153 (2020)

    MATH  Google Scholar 

  27. Rulkov, N.F.: Modeling of spiking-bursting neural behavior using two-dimensional map. Phys. Rev. E 65(4), 041922 (2002)

    MATH  Google Scholar 

  28. Shilnikov, A.L., Rulkov, N.F.: Origin of chaos in a two-dimensional map modeling spiking-bursting neural activity. Int. J. Bifur. Chaos 13(11), 3325–3340 (2003)

    MATH  Google Scholar 

  29. Bao, H., Hua, Z., Li, H., Chen, M., Bao, B.: Memristor-based hyperchaotic maps and application in auxiliary classifier generative adversarial nets. IEEE Trans. Ind. Inform. 18(8), 5297–5306 (2022)

    Google Scholar 

  30. Hua, Z., Zhou, B., Zhou, Y.: Sine-transform-based chaotic system with FPGA implementation. IEEE Trans. Ind. Electron. 65(3), 2557–2566 (2018)

    Google Scholar 

  31. Hua, M., Bao, H., Wu, H., Xu, Q., Bao, B.: A single neuron model with memristive synaptic weight. Chin. J. Phys. 76, 217–227 (2022)

    Google Scholar 

  32. Bao, H., Liu, W.B., Chen, M.: Hidden extreme multistability and dimensionality reduction analysis for an improved non-autonomous memristive FitzHugh-Nagumo circuit. Nonlinear Dyn. 96, 1879–1894 (2019)

    MATH  Google Scholar 

  33. Njitacke, Z.T., Koumetio, B.N., Ramakrishnan, B., Leutcho, G.D., Fozin, T.F., Tsafack, N., Rajagopal, K., Kengne, J.: Hamiltonian energy and coexistence of hidden firing patterns from bidirectional coupling between two different neurons. Cogn. Neurodyn. 16, 899–916 (2022)

    Google Scholar 

  34. Li, Z., Zhou, H., Wang, M., Ma, M.: Coexisting firing patterns and phase synchronization in locally active memristor coupled neurons with HR and FN models. Nonlinear Dyn. 104(2), 1455–1473 (2021)

    Google Scholar 

  35. Zhang, S., Zheng, J., Wang, X., Zeng, Z.: A novel no-equilibrium HR neuron model with hidden homogeneous extreme multistability. Chaos Solit. Fract. 145, 110761 (2021)

    MATH  Google Scholar 

  36. Mehrabbeil, M., Parastesh, F., Ramadoss, J., Rajagopal, K., Namazi, H., Jafari, S.: Synchronization and chimera states in the network of electrochemically coupled memristive Rulkov neuron maps. Math. Biosci. Eng. 18(6), 9394–9409 (2021)

    MATH  Google Scholar 

  37. Ramakrishnan, B., Mehrabbeik, M., Parastesh, F., Rajagopal, K., Jafari, S.: A new memristive neuron map model and its network’s dynamics under electrochemical coupling. Electronics 11(1), 153 (2022)

    Google Scholar 

  38. Peng, Y.X., Sun, K.H., He, S.B.: A discrete memristor model and its application in Hénon map. Chaos Solit. Fract. 137, 109873 (2020)

    MATH  Google Scholar 

  39. Bao, H., Hua, Z.Y., Li, H.Z., Chen, M., Bao, B.C.: Discrete memristor hyperchaotic maps. IEEE Trans. Circuits Syst. I. 68(11), 4534–4544 (2021)

    Google Scholar 

  40. Deng, Y., Li, Y.: Nonparametric bifurcation mechanism in 2-D hyperchaotic discrete memristor-based map. Nonlinear Dyn. 104, 4601–4614 (2021)

    Google Scholar 

  41. Rong, K., Bao, H., Li, H., Hua, Z., Bao, B.: Memristive Hénon map with hidden Neimark–Sacker bifurcations. Nonlinear Dyn. 108(4), 4459–4470 (2022)

    Google Scholar 

  42. Deng, Y., Li, Y.: Bifurcation and bursting oscillations in 2D non-autonomous discrete memristor-based hyperchaotic map. Chaos Solit. Fract. 150, 111064 (2021)

    Google Scholar 

  43. Zhou, X.J., Li, C.B., Li, Y.X., Lu, X., Lei, T.F.: An amplitude-controllable 3-D hyperchaotic map with homogenous multistability. Nonlinear Dyn. 105, 1843–1857 (2021)

    Google Scholar 

  44. Liu, T., Mou, J., Xiong, L., Han, X., Yan, H., Cao, Y.: Hyperchaotic maps of a discrete memristor coupled to trigonometric function. Phys. Scr. 96(12), 125242 (2021)

    Google Scholar 

  45. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Phys. D 16(3), 285–317 (1985)

    MATH  Google Scholar 

  46. Bao, H., Hua, Z., Wang, N., Zhu, L., Chen, M., Bao, B.: Initials-boosted coexisting chaos in a 2-D Sine map and its hardware implementation. IEEE Trans. Ind. Inf. 17(2), 1132–1140 (2021)

    Google Scholar 

  47. Rajagopal, K., Karthikeyan, A., Srinivasan, A.K.: FPGA implementation of novel fractional-order chaotic systems with two equilibriums and no equilibrium and its adaptive sliding mode synchronization. Nonlinear Dyn. 87(4), 2281–2304 (2017)

    Google Scholar 

  48. Cai, J., Bao, H., Chen, M., Xu, Q., Bao, B.: Analog/digital multiplierless implementations for nullcline-characteristics-based piecewise linear Hindmarsh–Rose neuron model. IEEE Trans. Circuits Syst. I Reg. Pap. 69(7), 2916–2927 (2022)

Download references

Funding

This work was supported by the National Natural Science Foundations of China under Grant Nos. 62201094, 62271088, and 12172066, the Scientific Research Foundation of Jiangsu Provincial Education Department, China, under Grant No. 22KJB510001, and the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China, under Grant Nos. KYCX22_3051 and KYCX22_3046.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Bao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, B., Hu, J., Cai, J. et al. Memristor-induced mode transitions and extreme multistability in a map-based neuron model. Nonlinear Dyn 111, 3765–3779 (2023). https://doi.org/10.1007/s11071-022-07981-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07981-8

Keywords

Navigation