Skip to main content
Log in

Consensus tracking control and vibration suppression for nonlinear mobile flexible manipulator multi-agent systems based on PDE model

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper evaluates the consensus tracking control of nonlinear multi-agent systems (MASs) described by partial differential equations (PDEs). Each agent of the MASs is a mobile flexible manipulator composed of a mobile carrier, a flexible manipulator, and an end load. By utilizing Hamilton’s principle, the characteristics of each agent are described by nonlinear fourth-order PDEs with the coupling of displacement, angle, and vibration. A consensus tracking control strategy is proposed for the MASs based on the obtained PDE model. Under the designed controller, both the angle of the flexible manipulator and the displacement of the mobile carrier of all agents can achieve consensus via mutual communication and track the desired positions and speeds. In addition, the elastic deformation and deformation speed of each agent’s flexible manipulator can be suppressed. The closed-loop system is proven asymptotically stable by constructing the Lyapunov function and applying the extended LaSalle’s invariance principle. A MAS example is numerically simulated to verify the effectiveness of the proposed control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

\({\mathbb {R}}\) :

Set of real numbers

\({\mathbb {Z}}^+\) :

Set of positive integers

\({\mathbb {R}}^N\) :

Set of \(N\times 1\)-dimensional real vectors, \(N\in {\mathbb {Z}}^+\)

\({\mathbb {R}}^{N\times N}\) :

Set of \(N\times N\)-dimensional real matrices, \(N\in {\mathbb {Z}}^+\)

\((*)_i\) :

States or parameters related to the ith agent, \(i=1,\ldots ,N\)

\(EI_i\) :

Bending stiffness of the flexible manipulator

\(L_i\) :

Length of the flexible manipulator

\(I_{Fi}\) :

Moment of inertia of the joint

\(\rho _i\) :

Mass per unit length of the flexible manipulator

\(M_i\) :

Mass of the mobile carrier

\(m_i\) :

Mass of the end load

\(\phi _i(t)\) :

Angle of the flexible manipulator

\(r_i(t)\) :

Horizontal displacement of the mobile carrier

\(\tau _i(t)\) :

Control input acting on the joint of the flexible manipulator

\(u_{Mi}(t)\) :

Control input acting on the mobile carrier

\(u_{Li}(t)\) :

Control input acting on the end of the flexible manipulator

\(F_i(x_i,t)\) :

Distributed control input acting on the flexible manipulator

\(y_i(x_i,t)\) :

Bending deformation of the flexible manipulator

\({\mathbf {{ P}}}_i(x_i,t)\) :

Position vector from the origin of the inertial frame to point \(x_i\) of the flexible manipulator

g :

Gravitational acceleration

References

  1. Dong, X., Zhou, Y., Ren, Z., Zhong, Y.: Time-varying formation control for unmanned aerial vehicles with switching interaction topologies. Control. Eng. Pract. 46, 26–36 (2016). https://doi.org/10.1016/j.conengprac.2015.10.001

    Article  Google Scholar 

  2. Kuo, C.-W., Tsai, C.-C., Lee, C.-T.: Intelligent leader-following consensus formation control using recurrent neural networks for small-size unmanned helicopters. IEEE Trans. Syst. Man Cybern. Syst. 51(2), 1288–1301 (2021). https://doi.org/10.1109/TSMC.2019.2896958

    Article  Google Scholar 

  3. Hu, Q., Shi, Y., Wang, C.: Event-based formation coordinated control for multiple spacecraft under communication constraints. IEEE Trans. Syst. Man Cybern. Syst. 51(5), 3168–3179 (2021). https://doi.org/10.1109/TSMC.2019.2919027

    Article  Google Scholar 

  4. Wang, Z., Wu, Y., Liu, L., Zhang, H.: Adaptive fault-tolerant consensus protocols for multiagent systems with directed graphs. IEEE Trans. Cybern. 50(1), 25–35 (2020). https://doi.org/10.1109/TCYB.2018.2859421

    Article  Google Scholar 

  5. Wang, W., Huang, J., Wen, C., Fan, H.: Distributed adaptive control for consensus tracking with application to formation control of nonholonomic mobile robots. Automatica 50(4), 1254–1263 (2014). https://doi.org/10.1016/j.automatica.2014.02.028

    Article  MATH  Google Scholar 

  6. Wen, G.-X., Chen, C.L.P., Liu, Y.-J., Liu, Z.: Neural-network-based adaptive leader-following consensus control for second-order non-linear multi-agent systems. IET Control Theory Appl. 9(13), 1927–1934 (2015). https://doi.org/10.1049/iet-cta.2014.1319

    Article  Google Scholar 

  7. Cao, Y., Ren, W.: Distributed coordinated tracking with reduced interaction via a variable structure approach. IEEE Trans. Autom. Control 57(1), 33–48 (2012). https://doi.org/10.1109/TAC.2011.2146830

    Article  MATH  Google Scholar 

  8. Wang, C., Wen, C., Guo, L.: Adaptive consensus control for nonlinear multiagent systems with unknown control directions and time-varying actuator faults. IEEE Trans. Autom. Control 66(9), 4222–4229 (2021). https://doi.org/10.1109/TAC.2020.3034209

    Article  MATH  Google Scholar 

  9. Luo, L., Mi, W., Zhong, S.: Adaptive consensus control of fractional multi-agent systems by distributed event-triggered strategy. Nonlinear Dyn. 100, 1327–1341 (2020). https://doi.org/10.1007/s11071-020-05586-7

    Article  MATH  Google Scholar 

  10. Wang, J., Chen, K., Liu, Q., Ma, Q.: Observer-based adaptive consensus tracking control for nonlinear multi-agent systems with actuator hysteresis. Nonlinear Dyn. 95, 2181–2195 (2019). https://doi.org/10.1007/s11071-018-4684-1

    Article  MATH  Google Scholar 

  11. Liang, H., Liu, G., Zhang, H., Huang, T.: Neural-network-based event-triggered adaptive control of nonaffine nonlinear multiagent systems with dynamic uncertainties. IEEE Trans. Neural Netw. Learn. Syst. 32(5), 2239–2250 (2021). https://doi.org/10.1109/TNNLS.2020.3003950

    Article  Google Scholar 

  12. Rahn, C.D.: Mechatronic Control of Distributed Noise and Vibration. Springer, Berlin, Heidelberg (2001)

    Book  MATH  Google Scholar 

  13. Liu, Y., Zhan, W., Xing, M., Wu, Y., Xu, R., Wu, X.: Boundary control of a rotating and length-varying flexible robotic manipulator system. IEEE Trans. Syst. Man Cybern. Syst. 52(1), 377–386 (2022). https://doi.org/10.1109/TSMC.2020.2999485

    Article  Google Scholar 

  14. Liu, Y., Mei, Y., Cai, H., He, C., Liu, T., Hu, G.: Asymmetric input-output constraint control of a flexible variable-length rotary crane arm. IEEE Trans. Cybern. (2021). https://doi.org/10.1109/TCYB.2021.3055151

    Article  Google Scholar 

  15. Liu, Z., Han, Z., Zhao, Z., He, W.: Modeling and adaptive control for a spatial flexible spacecraft with unknown actuator failures. SCIENCE CHINA Inf. Sci. 64, 152208 (2021). https://doi.org/10.1007/s11432-020-3109-x

    Article  Google Scholar 

  16. Liu, Z., He, X., Zhao, Z., Ahn, C.K., Li, H.-X.: Vibration control for spatial aerial refueling hoses with bounded actuators. IEEE Trans. Industr. Electron. 68(5), 4209–4217 (2021). https://doi.org/10.1109/TIE.2020.2984442

    Article  Google Scholar 

  17. Zhao, Z., He, X., Ren, Z., Wen, G.: Boundary adaptive robust control of a flexible riser system with input nonlinearities. IEEE Trans. Syst. Man Cybern. Syst. 49(10), 1971–1980 (2019). https://doi.org/10.1109/TSMC.2018.2882734

    Article  Google Scholar 

  18. Qiu, Q., Su, H.: Distributed adaptive consensus of parabolic pde agents on switching graphs with relative output information. IEEE Trans. Industr. Inf. 18(1), 297–304 (2022). https://doi.org/10.1109/TII.2021.3070432

    Article  Google Scholar 

  19. Yang, C., Huang, T., Zhang, A., Qiu, J., Cao, J., Alsaadi, F.E.: Output consensus of multiagent systems based on pdes with input constraint: A boundary control approach. IEEE Trans. Syst. Man Cybern. Syst. 51(1), 370–377 (2021). https://doi.org/10.1109/TSMC.2018.2871615

    Article  Google Scholar 

  20. Chen, Y., Zuo, Z., Wang, Y.: Bipartite consensus for a network of wave pdes over a signed directed graph. Automatica 129, 109640 (2021). https://doi.org/10.1016/j.automatica.2021.109640

    Article  MATH  Google Scholar 

  21. Wang, X., Huang, N.: Finite-time consensus of multi-agent systems driven by hyperbolic partial differential equations via boundary control. Appl. Math. Mech. 42, 1799–1816 (2021). https://doi.org/10.1007/s10483-021-2789-6

    Article  MATH  Google Scholar 

  22. Xing, X., Liu, J.: Vibration and position control of overhead crane with three-dimensional variable length cable subject to input amplitude and rate constraints. IEEE Trans. Syst. Man Cybern. Syst. 51(7), 4127–4138 (2021). https://doi.org/10.1109/TSMC.2019.2930815

    Article  Google Scholar 

  23. Zhang, L., Xu, S., Ju, X., Cui, N.: Flexible satellite control via fixed-time prescribed performance control and fully adaptive component synthesis vibration suppression. Nonlinear Dyn. 100, 3413–3432 (2020). https://doi.org/10.1007/s11071-020-05662-y

    Article  Google Scholar 

  24. Paranjape, A.A., Guan, J., Chung, S.-J., Krstic, M.: Pde boundary control for flexible articulated wings on a robotic aircraft. IEEE Trans. Rob. 29(3), 625–640 (2013). https://doi.org/10.1109/TRO.2013.2240711

    Article  Google Scholar 

  25. Li, L., Cao, F., Liu, J.: Vibration control of flexible manipulator with unknown control direction. Int. J. Control 94(10), 2690–2702 (2021). https://doi.org/10.1080/00207179.2020.1731609

    Article  MATH  Google Scholar 

  26. Liu, Y., Chen, X., Mei, Y., Wu, Y.: Observer-based boundary control for an asymmetric output-constrained flexible robotic manipulator. SCIENCE CHINA Inf. Sci. 65, 139203 (2022). https://doi.org/10.1007/s11432-019-2893-y

    Article  Google Scholar 

  27. Cao, F., Liu, J.: An adaptive iterative learning algorithm for boundary control of a coupled ode-pde two-link rigid-flexible manipulator. J. Franklin Inst. 354(1), 277–297 (2017). https://doi.org/10.1016/j.jfranklin.2016.10.013

    Article  MATH  Google Scholar 

  28. Zhang, S., Zhao, X., Liu, Z., Li, Q.: Boundary torque control of a flexible two-link manipulator and its experimental investigation. IEEE Trans. Industr. Electron. 68(9), 8708–8717 (2021). https://doi.org/10.1109/TIE.2020.3013742

    Article  Google Scholar 

  29. Ghariblu, H., Korayem, M.H.: Trajectory optimization of flexible mobile manipulators. Robotica 24(3), 333–335 (2006). https://doi.org/10.1017/S0263574705002225

    Article  Google Scholar 

  30. Korayem, M.H., Dehkordi, S.F.: Dynamic modeling of flexible cooperative mobile manipulator with revolute-prismatic joints for the purpose of moving common object with closed kinematic chain using the recursive gibbs-appell formulation. Mech. Mach. Theory 137, 254–279 (2019). https://doi.org/10.1016/j.mechmachtheory.2019.03.026

    Article  Google Scholar 

  31. Korayem, M.H., Rahimi, H.N., Nikoobin, A.: Mathematical modeling and trajectory planning of mobile manipulators with flexible links and joints. Appl. Math. Model. 36(7), 3229–3244 (2012). https://doi.org/10.1016/j.apm.2011.10.002

    Article  MATH  Google Scholar 

  32. Xing, X., Liu, J.: Switching fault-tolerant control of a moving vehicle-mounted flexible manipulator system with state constraints. J. Franklin Inst. 355(6), 3050–3078 (2018). https://doi.org/10.1016/j.jfranklin.2018.02.018

    Article  MATH  Google Scholar 

  33. Zhang, X., Liu, L., Feng, G.: Leader-follower consensus of time-varying nonlinear multi-agent systems. Automatica 52, 8–14 (2015). https://doi.org/10.1016/j.automatica.2014.10.127

    Article  MATH  Google Scholar 

  34. Sinopoli, B., Sharp, C., Schenato, L., Schaffert, S., Sastry, S.S.: Distributed control applications within sensor networks. Proc. IEEE 91(8), 1235–1246 (2003). https://doi.org/10.1109/JPROC.2003.814926

    Article  Google Scholar 

  35. Ray, W.H.: Advanced Process Control. McGraw-Hill Companies, New York, NY (1981)

    Google Scholar 

  36. Smith, G.D.: Numerical Solution of Partial Differential Equations: Finite Difference Methods. Oxford University Press, Oxford (1978)

    Google Scholar 

  37. Liu, Y., Chen, X., Wu, Y., Cai, H., Yokoi, H.: Adaptive neural network control of a flexible spacecraft subject to input nonlinearity and asymmetric output constraint. IEEE Trans. Neural Netw. Learn. Syst. (2021). https://doi.org/10.1109/TNNLS.2021.3072907

    Article  Google Scholar 

  38. Zhao, Z., Ahn, C.K., Li, H.-X.: Boundary antidisturbance control of a spatially nonlinear flexible string system. IEEE Trans. Industr. Electron. 67(6), 4846–4856 (2020). https://doi.org/10.1109/TIE.2019.2931230

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Number 61873296).

Funding

Funding was provided by National Natural Science Foundation of China (Grant Number 61873296).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, investigation, control design, analysis and validation were performed by LL and JL. The original draft of the manuscript was written by LL and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jinkun Liu.

Ethics declarations

Conflict of interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Liu, J. Consensus tracking control and vibration suppression for nonlinear mobile flexible manipulator multi-agent systems based on PDE model. Nonlinear Dyn 111, 3345–3359 (2023). https://doi.org/10.1007/s11071-022-07980-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07980-9

Keywords

Navigation