Skip to main content
Log in

Design and trajectory tracking control of a novel pneumatic bellows actuator

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper designs a pneumatic bellows actuator (PBA) and proposes a double-loop control strategy for realizing its trajectory tracking control objective. To fully utilize the advantage of the PBA’s large elongation, the finite element method (FEM) is used to analyze the relationship between the elongation and the pneumatic pressure of the PBA, and on this basis, a set of appropriate physical parameters are chosen for the PBA. For the tracking control of the PBA, a double-loop control (DLC) strategy, which includes an outer loop and an inner loop, is proposed for realizing the trajectory tracking control objective of the PBA. In the proposed strategy, the outer loop is composed of a feedforward controller and a feedback controller. The feedforward controller is used to deal with the asymmetric hysteresis of the PBA, and the feedback controller is used to eliminate the control error that is caused by the uncertain factors. The inner loop is composed of a compensator, which is used to compensate for the pneumatic pressure regulation error that is caused by the dead zone and the lag of the proportional-pressure regulator. Experiments are carried out to show the effectiveness and superior performance of the proposed DLC strategy, and the experimental results show that the PBA can generate large axial elongation while the high-precision trajectory tracking control objective is realized by using the DLC strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this paper.

References

  1. Shabana, A.A., Eldeeb, A.E.: Motion and shape control of soft robots and materials. Nonlinear Dyn. 104(1), 165–189 (2021)

    Article  Google Scholar 

  2. Sun, N., Liang, D.K., Wu, Y.M., Chen, Y.H., Qin, Y.D., Fang, Y.C.: Adaptive control for pneumatic artificial muscle systems with parametric uncertainties and unidirectional input constraints. IEEE Trans. Ind. Inform. 16(2), 969–979 (2019)

    Article  Google Scholar 

  3. Rus, D., Tolley, M.T.: Design, fabrication and control of soft robots. Nature 521(7553), 467–475 (2015)

    Article  Google Scholar 

  4. Luo, K., Tian, Q., Hu, H.Y.: Dynamic modeling, simulation and design of smart membrane systems driven by soft actuators of multilayer dielectric elastomers. Nonlinear Dyn. 102(3), 1463–1483 (2020)

    Article  Google Scholar 

  5. Carboni, B., Lacarbonara, W.: Nonlinear dynamic characterization of a new hysteretic device: experiments and computations. Nonlinear Dyn. 83(1), 23–39 (2016)

    Article  Google Scholar 

  6. Xie, S.L., Mei, J.P., Liu, H.T., Wang, Y.: Hysteresis modeling and trajectory tracking control of the pneumatic muscle actuator using modified PrandtlCIshlinskii model. Mech. Mach. Theory 120, 213–224 (2018)

    Article  Google Scholar 

  7. Liang, D.K., Sun, N., Wu, Y.M., Chen, Y.H., Fang, Y.C., Liu, L.Q.: Energy-based motion control for pneumatic artificial muscle-actuated robots with experiments. IEEE Trans. Ind. Electron. (2021). https://doi.org/10.1109/TIE.2021.3095788

    Article  Google Scholar 

  8. Helps, T., Taghavi, M., Wang, S.H., Rossiter, J.: Twisted rubber variable-stiffness artificial muscles. Soft Robot. 7(3), 386–395 (2020)

    Article  Google Scholar 

  9. Wang, J.B., Min, J., Fei, Y.Q., Pang, W.: Study on nonlinear crawling locomotion of modular differential drive soft robot. Nonlinear Dyn. 97(2), 1107–1123 (2019)

    Article  Google Scholar 

  10. Xiao, H., Wu, J.D., Ye, W.J., Wang, Y.W.: Dynamic modeling of dielectric elastomer actuators based on thermodynamic theory. Mech. Adv. Mater. Struct. 29(11), 1543–1552 (2022)

    Article  Google Scholar 

  11. Li, W.B., Cheng, T., Ye, M.X., Ng, C.S.H., Chiu, P.W.Y., Li, Z.: Kinematic modeling and visual servo control of a soft-bodied magnetic anchored and guided endoscope. IEEE/ASME Trans. Mech. 25(3), 1531–1542 (2020)

    Article  Google Scholar 

  12. Huang, P., Wu, J.D., Zhang, P., Wang, Y.W., Su, C.Y.: Dynamic modeling and tracking control for dielectric elastomer actuator with a model predictive controller. IEEE Trans. Ind. Electron. 69(2), 1819–1828 (2022)

    Article  Google Scholar 

  13. Gu, G.Y., Gupta, U., Zhu, J., Zhu, L.M., Zhu, X.Y.: Modeling of viscoelastic electromechanical behavior in a soft dielectric elastomer actuator. IEEE Trans. Robot. 33(5), 1263–1271 (2017)

    Article  Google Scholar 

  14. Hashem, R., Stommel, M., Cheng, L.K., Xu, W.L.: Design and characterization of a bellows-driven soft pneumatic actuator. IEEE/ASME Trans. Mech. 26(5), 2327–2338 (2020)

    Article  Google Scholar 

  15. Bishop-Moser, J., Kota, S.: Design and modeling of generalized fiber-reinforced pneumatic soft actuators. IEEE Trans. Robot. 31(3), 536–545 (2015)

    Article  Google Scholar 

  16. Guan, Q.H., Sun, J., Liu, Y.J., Wereley, N.M., Leng, J.S.: Novel bending and helical extensile/contractile pneumatic artificial muscles inspired by elephant trunk. Soft Robot. 7(5), 597–614 (2020)

    Article  Google Scholar 

  17. Wirekoh, J., Park, Y.L.: Design of flat pneumatic artificial muscles. Smart Mater. Struct. 26(3), 035009 (2017)

    Article  Google Scholar 

  18. Connolly, F., Walsh, C.J., Bertoldi, K.: Automatic design of fiber-reinforced soft actuators for trajectory matching. P. Natl. Acad. Sci. USA 114(1), 51–56 (2017)

    Article  Google Scholar 

  19. Rus, D., Tolley, M.T.: Design, fabrication and control of origami robots. Nat. Rev. Mater. 3(6), 101–112 (2018)

    Article  Google Scholar 

  20. Liu, S.C., Zhu, Y.M., Zhang, Z.C., Fang, Z.G., Tan, J.Y., Peng, J., Song, C.Y., Asada, H.H., Wang, Z.: Otariidae-inspired soft-robotic supernumerary flippers by fabric kirigami and origami. IEEE/ASME Trans. Mech. 26(5), 2747–2757 (2020)

    Article  Google Scholar 

  21. Shakiba, S., Ourak, M., Vander Poorten, E., Ayati, M., Yousefi-Koma, A.: Modeling and compensation of asymmetric rate-dependent hysteresis of a miniature pneumatic artificial muscle-based catheter. Mech. Syst. Signal Process 154, 107532 (2021)

    Article  Google Scholar 

  22. Chen, Y.H., Sun, N., Liang, D.K., Qin, Y.D., Fang, Y.C.: A neuroadaptive control method for pneumatic artificial muscle systems with hardware experiments. Mech. Syst. Signal Process. 146, 106976 (2021)

    Article  Google Scholar 

  23. Al Janaideh, M., Rakotondrabe, M., Aljanaideh, O.: Further results on hysteresis compensation of smart micropositioning systems with the inverse PrandtlCIshlinskii compensator. IEEE Trans. Control Syst. Technol. 24(2), 428–439 (2015)

    Article  Google Scholar 

  24. Zhang, Y., Liu, H.S., Ma, T.H., Hao, L.N., Li, Z.: A comprehensive dynamic model for pneumatic artificial muscles considering different input frequencies and mechanical loads. Mech. Syst. Signal Process. 148, 107133 (2021)

    Article  Google Scholar 

  25. Chen, S.T., Chen, F.F., Cao, Z.Z., Wang, Y.S., Miao, Y.P., Gu, G.Y., Zhu, X.Y.: Topology optimization of skeleton-reinforced soft pneumatic actuators for desired motions. IEEE/ASME Trans. Mech. 26(4), 1745–1753 (2021)

    Article  Google Scholar 

  26. Rehman, T., Faudzi, A.A.M., Dewi, D.E.O., Ali, M.S.M.: Design, characterization, and manufacturing of circular bellows pneumatic soft actuator. Int. J. Adv. Manuf. Tech. 93(9), 4295–4304 (2017)

    Article  Google Scholar 

  27. Al Janaideh, M., Xu, R., Tan, X.B.: Adaptive estimation of play radii for a prandtl CIshlinskii hysteresis operator. IEEE Trans. Control Syst. Technol. 29(6), 2687–2695 (2021)

    Article  Google Scholar 

  28. Zou, J., Gu, G.Y.: High-precision tracking control of a soft dielectric elastomer actuator with inverse viscoelastic hysteresis compensation. IEEE/ASME Trans. Mech. 24(1), 36–44 (2018)

    Article  Google Scholar 

  29. Rakotondrabe, M.: Multivariable classical PrandtlCIshlinskii hysteresis modeling and compensation and sensorless control of a nonlinear 2-dof piezoactuator. Nonlinear Dyn. 89(1), 481–499 (2017)

  30. Gu, G.Y., Zhu, L.M., Su, C.Y.: Modeling and compensation of asymmetric hysteresis nonlinearity for piezoceramic actuators with a modified PrandtlCIshlinskii model. IEEE Trans. Ind. Electron. 61(3), 1583–1595 (2013)

  31. Lai, X.Z., Wang, Y.W., Wu, M., Cao, W.H.: Stable control strategy for planar three-link underactuated mechanical system. IEEE/ASME Trans. Mech. 21(3), 1345–1356 (2016)

    Article  Google Scholar 

  32. Li, X.T., Yin, M.H.: Parameter estimation for chaotic systems by hybrid differential evolution algorithm and artificial bee colony algorithm. Nonlinear Dyn. 77(1), 61–71 (2014)

  33. Xie, S.L., Ren, G.Y., Xiong, J.J., Lu, Y.J.: A trajectory tracking control of a robot actuated with pneumatic artificial muscles based on hysteresis compensation. IEEE Access 8, 80964–80977 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 61773353, in part by the Hubei Provincial Natural Science Foundation of China under Grant 2015CFA010, and in part by the 111 Project under Grant B17040.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu-Zhi Lai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, H., Meng, QX., Lai, XZ. et al. Design and trajectory tracking control of a novel pneumatic bellows actuator. Nonlinear Dyn 111, 3173–3190 (2023). https://doi.org/10.1007/s11071-022-07979-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07979-2

Keywords

Navigation