Skip to main content
Log in

Canonical solution and singularity propagations of the nonlocal semi-discrete Schrödinger equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a nonlocal semi-discrete Schrödinger equation is first reduced from the combined Ragnisco–Tu equation with a nonlocal reduction, which is connected to the reverse-t Schrödinger equation and the reverse-(xt) Schrödinger equation under two proper continuum limits, respectively. We derive the constrained double Wronskian solution of the nonlocal semi-discrete Schrödinger equation, by putting a constraint with a group of algebra equations on the double Wronskian solution of the unreduced equation. We further construct the canonical form of the constrained double Wronskian solution with the help of the Jordan decomposition and the invariance property of the constrained double Wronskian solution under similarity transformations of matrixes. Finally, in complex field, a complete classification of the spectral parameter k in soliton is made, which allows us to analyse singularity points of soliton, and describe the related singularity propagations in figures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Zakharov, V.E.: What Is Integrability? Springer, Berlin Heidelberg (1991)

    MATH  Google Scholar 

  2. Zhang, Y.N., Hu, X.B., Sun, J.Q.: A numerical study of the 3-periodic wave solutions to KdV-type equations. J. Comp. Phys. 355, 566–581 (2018)

    MathSciNet  MATH  Google Scholar 

  3. Zhang, Y.N., Hu, X.B., He, Y., Sun, J.Q.: A numerical study of the 3-periodic wave solutions to Toda-type equations. Commun. Comput. Phys. 26(2), 579–598 (2019)

    MathSciNet  MATH  Google Scholar 

  4. Ablowitz, M.J., Segur, H.: Solitons and the Inverse Scattering Transform. SIAM, Philadelphia (1981)

    MATH  Google Scholar 

  5. Ohta, Y.: Special Solutions of Discrete Integrable Systems. Springer, Berlin Heidel-berg (2004)

    MATH  Google Scholar 

  6. Hirota, R.: Direct Methods in Soliton Theory. Springer, Berlin Heidel-berg (1980)

  7. Wazwaz, A.M.: The variational iteration method for solving linear and nonlinear systems of PDEs. Comp. Math. Appl. 54, 895–902 (2007)

  8. Wazwaz, A.M.: The variational iteration method: a reliable tool for solving linear and nonlinear wave equations. Comp. Math. Appl. 54, 926–932 (2007)

    MathSciNet  MATH  Google Scholar 

  9. Wazwaz, A.M.: The variational iteration method: a powerful scheme for handling linear and nonlinear diffusion equations. Comp. Math. Appl. 54, 933–939 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Sato, M.: Soliton equations as dynamical systems on infinite dimensional grassmann manifold. North-Holland Math. Stud. 81(1), 259–271 (1981)

    MathSciNet  Google Scholar 

  11. Miwa, T., Jimbo, M., Date, E.: Solitons: Differential Equations, Symmetries and Infinite Dimensional Algebras. Cambridge University Press (in English) (2000) (Originally published in Japanese by Iwanami Shoten, Publishers, Tokyo in 1993)

  12. Fokas, A.S., Gelfand, I.M.: Algebraic Aspects of Integrable Equations. Birkhauser, Basel (1996)

    Google Scholar 

  13. Deift, P., Zhou, X.: A steepest descent method for oscillatory Riemann-Hilbert problems: asymptotics for the MKdV equation. Ann. Math. 137(2), 295–368 (1993)

    MathSciNet  MATH  Google Scholar 

  14. Deift, P.: Orthogonal Polynomials and Random Matrices: a Riemann-Hilbert Approach. American Mathematical Society, Providence, RI (2000)

    MATH  Google Scholar 

  15. Li, B.Q., Ma, Y.L.: Lax pair, Darboux transformation and Nth-order rogue wave solutions for a (2+1)-dimensional Heisenberg ferromagnetic spin chain equation. Comput. Math, Appl. 77(2), 514–524 (2019)

    MathSciNet  MATH  Google Scholar 

  16. Li, B.Q., Ma, Y.L.: N-order rogue waves and their novel colliding dynamics for a transient stimulated Raman scattering system arising from nonlinear optics. Nonlinear Dyn. 101, 2449–2461 (2020)

    Google Scholar 

  17. Li, B.Q., Ma, Y.L.: Extended generalized Darboux transformation to hybrid rogue wave and breather solutions for a nonlinear Schrödinger equation. Appl. Math. Comput. 386, 125469 (2020)

  18. Ma, Y.L.: Interaction and energy transition between the breather and rogue wave for a generalized nonlinear Schrödinger system with two higher-order dispersion operators in optical fibers. Nonlinear Dyn. 97, 95–105 (2019)

    MATH  Google Scholar 

  19. Li, B.Q., Ma, Y.L.: Interaction properties between rogue wave and breathers to the manakov system arising from stationary self-focusing electromagnetic systems. Chaos Solitons Fract. 156, 111832 (2022)

    MathSciNet  Google Scholar 

  20. Dickey, L.A.: Soliton Equations and Hamiltonian Systems. World Scientific, Singapore (2003)

    MATH  Google Scholar 

  21. Ma, Y.L., Wazwaz, A.M., Li, B.Q.: New extended Kadomtsev–Petviashvili equation: multiple soliton solutions, breather, lump and interaction solutions. Nonlinear Dyn. 104, 1581–1594 (2021)

    Google Scholar 

  22. Ma, Y.L., Wazwaz, A.M., Li, B.Q.: A new (3+1)-dimensional Kadomtsev–Petviashvili equation and its integrability, multiple-solitons, breathers and lump waves. Math. Comput. Simul. 187, 505–519 (2021)

    MathSciNet  MATH  Google Scholar 

  23. Chen, D.Y.: Introduction to the Soliton Theory. Scienc Press (2006)

  24. Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: The inverse scattering transform-Fourier analysis for nonlinear problems. Stud. Appl. Math. 53(4), 249–315 (1974)

    MathSciNet  MATH  Google Scholar 

  25. Ablowitz, M.J., Ladik, J.F.: Nonlinear differential-difference equations. J. Math. Phys. 16(3), 598–603 (1975)

    MathSciNet  MATH  Google Scholar 

  26. Ablowitz, M.J., Ladik, J.F.: Nonlinear differential-difference equations and Fourier analysis. J. Math. Phys. 17(6), 1011–1018 (1976)

    MathSciNet  MATH  Google Scholar 

  27. Li, L., Yu, F.: Interaction dynamics of nonautonomous bright and dark solitons of the discrete (2+1)-dimensional Ablowitz-Ladik equation. Nonlinear Dyn. 106, 855–865 (2021)

    Google Scholar 

  28. Bender, C.M., Boettcher, S.: Real spectra in non-Hermitian Hamiltonians having \({\cal{P} }{\cal{T} }\) symmetry. Phys. Rev. Lett. 80, 5243 (1998)

    MathSciNet  MATH  Google Scholar 

  29. Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear Schrödinger equation. Phys. Rev. Lett. 110(6), 064105–064110 (2013)

    Google Scholar 

  30. Wang, X., Wei, J.: Three types of Darboux transformation and general soliton solutions for the space-shifted nonlocal PT symmetric nonlinear Schrödinger equation. Appl. Math. Lett. 130, 107998 (2022)

    MATH  Google Scholar 

  31. Xin, X., Guo, Z., Hu, Y., Zhang, L.: Darboux transformation and exact solutions for high order nonlocal coupled akns system. Appl. Math. Appl. Phys. (English) 9(11), 17 (2021)

    Google Scholar 

  32. Ablowitz, M.J., Musslimani, Z.H.: Integrable discrete P-T symmetric model. Phys. Rev. E. 90(3), 032912 (2014)

    Google Scholar 

  33. Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear equations. Stud. Appl. Math. 139(1), 7–59 (2016)

    MathSciNet  MATH  Google Scholar 

  34. Chen, K., Zhang, D.J.: Solutions of the nonlocal nonlinear Schrödinger hierarchy via reduction. Appl. Math. Lett. 75, 82–88 (2018)

    MathSciNet  MATH  Google Scholar 

  35. Hanif, Y., Saleem, U.: Broken and unbroken PT-symmetric solutions of semi-discrete nonlocal nonlinear Schrödinger equation. Nonlinear Dyn. 98, 233–244 (2019)

    MATH  Google Scholar 

  36. Chen, K., Deng, X., Lou, S.Y., Zhang, D.J.: Solutions of Local and nonlocal equations reduced from the AKNS hierarchy. Stud. Appl. Math. 141(1), 1–29 (2018)

  37. Ablowitz, M.J., Luo, X.D., Musslimani, Z.H., Zhu, Y.: Integrable nonlocal derivative nonlinear Schrödinger equations. Inverse Problems 38, 065003 (2022)

    MATH  Google Scholar 

  38. Ablowitz, M.J., Musslimani, Z.H.: Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation. Nonlinearity 29, 915–946 (2016)

    MathSciNet  MATH  Google Scholar 

  39. Rybalko, Y., Shepelsky, D.: Long-time asymptotics for the integrable nonlocal focusing nonlinear Schrödinger equation for a family of step-like initial data. Commun. Math. Phys. 382, 87–121 (2021)

    MATH  Google Scholar 

  40. Fan, E.G.: Integrable Systems, Orthogonal Polynomials, and Random Matrices-Riemann-Hilbert Method (in Chinese). Science Press, Beijing (2022)

    Google Scholar 

  41. Wu, J.: RiemannCHilbert approach and soliton classification for a nonlocal integrable nonlinear Schrödinger equation of reverse-time type. Nonlinear Dyn. 107, 1127–1139 (2022)

    Google Scholar 

  42. Geng, X.G., Wang, K.D., Chen, M.M.: Long-time asymptotics of the Spin-1 Gross-Pitaevskii equation. Commun. Math. Phys. 382, 585 (2021)

    MathSciNet  MATH  Google Scholar 

  43. Li, Y., Li, J., Wang, R.: Multi-soliton solutions of the N-component nonlinear Schrödinger equations via Riemann–Hilbert approach. Nonlinear Dyn. 105, 1765–1772 (2021)

    Google Scholar 

  44. Liu, Q.M.: Double wronskian solutions of the AKNS and the classical Boussinesq hierarchies. J. Phys. Soc. Jpn. 59, 3520–3527 (1990)

    MathSciNet  Google Scholar 

  45. Wadati, M., Sogo, K.: Gauge transformation in soliton theory. J. Phys. Soc. Jpn. 52(2), 394–398 (1983)

    MathSciNet  Google Scholar 

  46. Zhou, Z.X.: Darboux transformations and global solutions for a nonlocal derivative nonlinear Schrödinger equation. Comm. Nonl. Sci. Nume. Simu. 62, 480–488 (2016)

    MATH  Google Scholar 

  47. Chen, J.: Generalized Darboux transformation and rational solutions for the nonlocal nonlinear Schrödinger equation with the self-induced parity-time symmetric potential. J. Appl. Math. Phys. 3, 530–536 (2015)

    Google Scholar 

  48. Xu, T., Li, H., Zhang, H., Lan, S.: Darboux transformation and analytic solutions of the discrete PT-symmetric nonlocal nonlinear Schrödinger equation. Appl. Math. Lett. 63, 88–94 (2017)

    MathSciNet  MATH  Google Scholar 

  49. Song, J.Y., Xiao, Y., Zhang, C.P.: Darboux transformation, exact solutions and conservation laws for the reverse space-time FokasCLenells equation. Nonlinear Dyn. 107, 3805–3818 (2022)

    Google Scholar 

  50. Merola, I., Ragnisco, O., Tu, G.Z.: A novel hierarchy of integrable lattices. Inverse Problems 10(6), 1315–1334 (1994)

    MathSciNet  MATH  Google Scholar 

  51. Chen, K., Deng, X., Zhang, D.J.: Symmetry constraint of the differential-difference KP hierarchy and a second discretization of the ZS-AKNS system. J. Nonl. Math. Phys. 24(1), 18–35 (2017)

    MathSciNet  MATH  Google Scholar 

  52. Chen, K., Na, C.N., Yang, J.X.: The double Wronskian solution of the coupled semi-discrete Schrödinger equation. Private Communication (2022)

  53. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore, MD (1996)

    MATH  Google Scholar 

  54. Shi, Y., Shen, S.F., Zhao, S.L.: Solutions and connections of nonlocal derivative nonlinear Schrödinger equations. Nonlinear Dyn. 95, 1257–1267 (2019)

  55. Fu, W., Huang, L., Tamizhmani, K.M., Zhang, D.J.: Integrable properties of the differential-difference Kadomtsev–Petviashvili hierarchy and continuum limits. Nonlinearity 26(12), 3197–3229 (2013)

    MathSciNet  MATH  Google Scholar 

  56. Nijhoff, F.W., Hietarinta, J., Joshi, N.: Discrete Systems and Integrability. Cambridge University Press, Cambridge (2016)

    MATH  Google Scholar 

  57. Chen, J.X., Yu, C.H., Jin, L.: Mathematical Analysis. Education Press, Beijing (2019)

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaxi Yang.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Na, C. & Yang, J. Canonical solution and singularity propagations of the nonlocal semi-discrete Schrödinger equation. Nonlinear Dyn 111, 1685–1700 (2023). https://doi.org/10.1007/s11071-022-07912-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07912-7

Keywords

Navigation