Skip to main content
Log in

Prescribed-time distributed formation control for a class of nonlinear multi-agent systems subject to internal uncertainties and external disturbances

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper proposes a prescribed-time formation control scheme with low complexity and performance guarantees for second-order nonlinear multi-agent systems with a directed graph. A continuous finite-time control based on the barrier Lyapunov function and a novel performance function is proposed. Within our scheme, the unmodeled dynamics and external disturbances of the system are handled by the combination of a function approximator and a disturbance observer based on neural network and sliding mode control, respectively. Different from many existing finite-time control results, the proposed scheme can set the settling time of the closed-loop system in advance, and there is no discontinuous control term and chattering phenomenon. Finally, it is proved that all signals in the closed-loop system are uniformly ultimately bounded. At the same time, a set of numerical comparisons intuitively illustrate the effectiveness and superiority of the proposed controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets during the current study are not publicly available but are available from the corresponding author on reasonable request.

References

  1. Olfati-Saber, R., Murray, R.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ren, W., Atkins, E.: Distributed multi-vehicle coordinated control via local information exchange. Int. J. Robust Nonlinear Control 17, 1002–1033 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Yin, Y.H., Wang, F.Y., Liu, Z.X., Chen, Z.Q.: Fault-tolerant consensus for switched multiagent systems with input saturation. Int. J. Robust Nonlinear Control 31(11), 5047–5068 (2021)

    Article  MathSciNet  Google Scholar 

  4. Pang, Z.H., Zheng, C.B., Sun, J., Han, Q., Liu, G.P.: Distance- and velocity-based collision avoidance for time-varying formation control of second-order multi-agent systems’’. IEEE Trans. Circuits II 68(4), 1253–1257 (2021)

    Google Scholar 

  5. Cai, Y., Zhang, H., Wang, Y., Zhang, J., He, Q.: Fixed-time time-varying formation tracking for nonlinear multi-agent systems under event-triggered mechanism. Inf. Sci. 564, 45–70 (2021)

    Article  MathSciNet  Google Scholar 

  6. Zhao, Q., Dong, X., Song, X., Ren, Z.: Cooperative time-varying formation guidance for leader-following missiles to intercept a maneuvering target with switching topologies. Nonlinear Dyn. 95, 129–141 (2019)

    Article  Google Scholar 

  7. Gu, N., Wang, D., Peng, Z., Liu, L.: Distributed containment maneuvering of uncertain under-actuated unmanned surface vehicles guided by multiple virtual leaders with a formation. Ocean Eng. 187, 105996 (2019)

    Article  Google Scholar 

  8. Tran, V.P., Garratt, M., Petersen, I.R.: Switching time-invariant formation control of a collaborative multi-agent system using negative imaginary systems theory. Control. Eng. Pract. 95, 104245 (2020)

    Article  Google Scholar 

  9. Gu, D.B., Hu, H.S.: Distributed network-based formation control. Int. J. Syst. Sci. 40(5), 539–552 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Massioni, P., Keviczky, T., Gill, E., Verhaegen, M.: A decomposition-based approach to linear time-periodic distributed control of satellite formations. IEEE Trans. Control Syst. Technol. 19(3), 481–492 (2011)

    Article  Google Scholar 

  11. Lin, Z., Wang, L., Han, Z., Fu, M.: Distributed formation control of multi-agent systems using complex Laplacian. IEEE Trans. Autom. Control 59(7), 1765–1777 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Oh, K.K., Park, M.C., Ahn, H.S.: A survey of multi-agent formation control. Automatica 53, 424–440 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Qin, W., Liu, Z., Chen, Z.: A novel observer-based formation for nonlinear multi-agent systems with time delay and intermittent communication. Nonlinear Dyn. 79, 1651–1664 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lu, J., Chen, F., Chen, G.R.: Nonsmooth leader-following formation control of nonidentical multi-agent systems with directed communication topologies. Automatica 69, 112–120 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Siavash, M., Majd, V.J., Tahmasebi, M.: A practical finite-time back-stepping sliding-mode formation controller design for stochastic nonlinear multi-agent systems with time-varying weighted topology. Int. J. Syst. Sci. 51(3), 488–506 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Meng, D.Y., Moore, K.L.: Robust cooperative learning control for directed networks with nonlinear dynamics. Automatica 75, 172–181 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Aryankia, K., Selmic, R.R.: Formation control and target tracking for a class of nonlinear multi-agent systems using neural networks. In: European Control Conference, pp. 160–165 (2020)

  18. Cui, Y., Liu, X.P., Deng, X., Wang, Q.: Observer-based adaptive fuzzy formation control of nonlinear multi-agent systems with nonstrict-feedback form. Int. J. Fuzzy Syst. 23(3), 680–691 (2021)

    Article  Google Scholar 

  19. Wang, L.M., He, H.B., Ge, M.F.: Model-independent formation tracking of multiple Euler-Lagrange systems via bounded inputs. IEEE Trans. Cybern. 51(5), 2813–2823 (2021)

    Article  Google Scholar 

  20. Modares, H., Nageshrao, S.P., Lopes, G.A.D., Babuska, R., Lewis, F.L.: Optimal model-free output synchronization of heterogeneous systems using off-policy reinforcement learning. Automatica 71, 334–341 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lazim, I.M., Husain, A.R., Mohamed, Z., Basri, M.A.M., Subha, N.A.M., Ramli, L.: Disturbance observer-based formation tracking control of multiple quadrotors in the presence of disturbances. Trans. Inst. Meas. Control. 41(14), 4129–4141 (2019)

  22. Lu, Y., Zhang, G.Q., Sun, Z.J., Zhang, W.D.: Robust adaptive formation control of underactuated autonomous surface vessels based on MLP and DOB. Nonlinear Dyn. 94(1), 503–519 (2018)

    Article  MATH  Google Scholar 

  23. Gu, N., Wang, D., Peng, Z., Liu, L.: Observer-based finite-time control for distributed path maneuvering of underactuated unmanned surface vehicles with collision avoidance and connectivity preservation. IEEE Trans. Syst. Man Cybern. Syst. 51(8), 5105–5115 (2021)

    Article  Google Scholar 

  24. Chen, F., Dimarogonas, D.V.: Observer-based leader-follower formation control with prescribed performance guarantees. IEEE Trans. control Netw. Syst. 8(1), 450–461 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  25. Stamouli, C.J., Bechlioulis, C.P., Kyriakopoulos, K.J.: Multi-agent formation control based on distributed estimation with prescribed performance. IEEE Robot. Autom. Lett. 5(2), 2929–2934 (2020)

    Article  Google Scholar 

  26. Dai, S.L., He, S.D., Chen, X., Xu, J.: Adaptive leader-follower formation control of nonholonomic mobile robots with prescribed transient and steady-state performance. IEEE Trans. Industr. Inf. 16(6), 3662–3671 (2020)

    Article  Google Scholar 

  27. Liu, H.T., Chen, G.J., Tian, X.H.: Cooperative formation control for multiple surface vessels based on barrier Lyapunov function and self-structuring neural networks. Ocean Eng. 216, 108163 (2020)

    Article  Google Scholar 

  28. Jiang, Y., Liu, Z., Chen, Z.: Robust fault-tolerant consensus control for nonlinear multi-agent systems with prescribed transient and steady-state performance. Asian J. Control 24(2), 642–658 (2021)

    Article  MathSciNet  Google Scholar 

  29. Hua, C.C., Chen, J.N., Li, Y.F.: Leader-follower finite-time formation control of multiple quadrotors with prescribed performance. Int. J. Syst. Sci. 48(12), 2499–2508 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Han, S.I.: Prescribed consensus and formation error constrained finite-time sliding mode control for multi-agent mobile robot systems. IET Control Theory Appl. 12(2), 282–290 (2018)

    Article  MathSciNet  Google Scholar 

  31. Zhu, Z., Xia, Y., Fu, M.: Attitude stabilization of rigid spacecraft with finite-time convergence. Int. J. Robust Nonlinear Control 21(6), 686–702 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sanner, R.M., Slotine, J.E.: Gaussian networks for direct adaptive control. IEEE Trans. Neural Netw. Learn. Syst. 3, 837–863 (1992)

    Article  Google Scholar 

  33. Ge, S.S., Wang, J.: Robust adaptive neural control for a class of perturbed strict feedback nonlinear systems’’. IEEE Trans. Neural Netw. Learn. Syst. 13(6), 1409–1419 (2002)

    Article  MathSciNet  Google Scholar 

  34. Wang, X., Li, Z., He, Z., Gao, H.: Adaptive fast smooth second-order sliding mode control for attitude tracking of a 3-DOF helicopter. arXiv e-prints arXiv:2008.10817 (2020)

  35. Ren, B., Ge, S.S., Tee, K.P., Lee, T.H.: Adaptive neural control for output feedback nonlinear systems using a barrier Lyapunov function. IEEE Trans. Neural Netw. 21(8), 1339–1345 (2010)

    Article  Google Scholar 

  36. Tee, K.P., Ren, B., Ge, S.S.: Control of nonlinear systems with time-varying output constraints. Automatica 47, 2511–2516 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Liu, Y., Liu, X., Jing, Y.: Adaptive neural networks finite-time tracking control for non-strict feedback systems via prescribed performance. Inf. Sci. 468, 29–46 (2018)

  38. Farrell, J.A., Polycarpou, M., Sharma, M., Dong, W.: Command filtered backstepping. IEEE Trans. Autom. Control 54(6), 1391–1395 (2009)

Download references

Funding

This work was supported by the Tianjin Natural Science Foundation of China (No. 20JCYBJC01060), the National Natural Science Foundation of China (No. 62103203, 61973175), the Fundamental Research Funds for the Central Universities under Grant (No. 63201196).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongxin Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Liu, Z. & Chen, Z. Prescribed-time distributed formation control for a class of nonlinear multi-agent systems subject to internal uncertainties and external disturbances. Nonlinear Dyn 111, 1643–1655 (2023). https://doi.org/10.1007/s11071-022-07909-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07909-2

Keywords

Navigation