Skip to main content
Log in

Boundary disturbance rejection for fractional distributed parameter systems via the sliding mode and Riesz basis approach

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We study the sliding mode control (SMC) design for unstable fractional heat and wave equations involving unknown external disturbances, respectively. In the case that the disturbance vanishes, a backstepping transform is constructed at first to stabilize the considered system in Mittag-Leffler (M-L) sense. When the disturbance flows into the boundary, sliding mode controllers are provided and the reaching conditions are also verified for fractional heat and wave systems, respectively. In the light of the Riesz basis approach, the well-posedness and closed-loop algebraic stability conclusions are established for fractional partial differential inclusion systems with discontinuous boundary conditions. As a by-product, a longtime unsolved problems raised in [Nonlinear Dynam, 38 (2004), 339-354], which is the first contribution about the boundary feedback stabilization control for fractional partial differential equations (PDEs), are completely solved with rigorous proof.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data are available upon request at the authors’ email address.

References

  1. Aguila-Camacho, N., Duarte-Mermoud, M.A., Gallegos, J.A.: Lyapunov functions for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 19, 2951–2957 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bazhlekova, E.: The abstract Cauchy problem for the fractional evolution equation, Fract Calc. Appl. Anal. 1, 255–270 (1998)

    MathSciNet  MATH  Google Scholar 

  3. Cai, R.Y., Zhou, H.C., Kou, C.H.: Boundary output feedback stabilization for spacial multi-dimensional coupled fractional reaction-diffusion systems. Asian J. Control (2021). https://doi.org/10.1002/asjc.2636

    Article  Google Scholar 

  4. Cai, R.Y., Zhou, H.C., Kou, C.H.: Boundary control strategy for three kinds of fractional heat equations with control-matched disturbances. Chaos, Solitons Fractals 146, 110886 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cai, R.Y., Zhou, H.C., Kou, C.H.: Active disturbance rejection control for fractional reaction-diffusion equations with spatially varying diffusivity and time delay. Sci. China Inform. Sci. 65, 129203 (2022)

    Article  Google Scholar 

  6. Cao, J.D., Stamov, G., Stamova, I., Simeonov, S.: Almost periodicity in impulsive fractional-order reaction-diffusion neural networks with time-varying delays. IEEE Trans. Cybern 51, 151–161 (2021)

    Article  Google Scholar 

  7. Chen, J., Cui, B.T., Chen, Y.Q.: Observer-based output feedback control for a boundary controlled fractional reaction diffusion system with spatially-varying diffusivity. IET Control Theory Appl. 12, 1561–1572 (2018)

    Article  MathSciNet  Google Scholar 

  8. Chen, J., Zhuang, B., Chen, Y.Q., Cui, B.T.: Diffusion control for a tempered anomalous diffusion system using fractional-order PI controllers. ISA Trans. 82, 94–106 (2018)

    Article  Google Scholar 

  9. Chen, Y.Q., Wei, Y.H., Liang, S., Wang, Y.: Indirect model reference adaptive control for a class of fractional order systems. Commun. Nonlinear Sci. Numer. Simulat. 39, 458–471 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, Y.Q., Wei, Y.H., Zhong, H., Wang, Y.: Sliding mode control with a second-order switching law for a class of nonlinear fractional order systems. Nonlinear Dyn. 85, 633–643 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Feng, H., Guo, B.Z.: A new active disturbance rejection control to output feedback stabilization for a onedimensional anti-stable wave equation with disturbance. IEEE Trans. Autom. Control 62, 3774–3787 (2017)

    Article  MATH  Google Scholar 

  12. Filippov, A.F.: Differential equations with discontinuous righthand sides. Kluwer Academic Publishers, Dordrecht, The Netherlands (2015)

    Google Scholar 

  13. Gao, Z.Q.: Active disturbance rejection control for nonlinear fractional-order systems. Int. J. Robust Nonlinear Control 26, 876–892 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ge, F.D., Chen, Y.Q., Kou, C.H.: Boundary feedback stabilisation for the time fractional-order anomalous diffusion system. IET Control Theory Appl. 10, 1250–1257 (2016)

    Article  MathSciNet  Google Scholar 

  15. Ge, F.D., Chen, Y.Q.: Regional output feedback stabilization of semilinear time-fractional diffusion systems in a parallelepipedon with control constraints. Int. J. Robust Nonlinear Control 30, 3639–3652 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ge, F.D., Meurer, T., Chen, Y.Q.: Mittag-Leffler convergent backstepping observers for coupled semilinear subdiffusion systems with spatially varying parameters. Syst/ Control Lett. 122, 86–92 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V.: Mittag-Leffler functions, related topics and applications. Springer, Heidelberg (2014)

    Book  MATH  Google Scholar 

  18. Gu, J.J., Wang, J.M.: Sliding mode control for N-coupled reaction-diffusion PDEs with boundary input disturbances. Int. J. Robust Nonlinear Control 29, 1437–1461 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Guo, B.Z., Jin, F.F.: Sliding mode and active disturbance rejection control to stabilization of one-dimensional anti-stable wave equations subject to disturbance in boundary input. IEEE Trans. Autom. Control 58, 1269–1274 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Guo, B.Z., Wang, J.M.: Control of Wave and Beam PDEs: The Riesz Basis Approach. Springer, Switzerland, (2019)

  21. Guo, B.Z., Zhou, H.C.: The active disturbance rejection control to stabilization for multi-dimensional wave equation with boundary control matched disturbance. IEEE Trans. Autom. Control 60, 143–157 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Guo, W., Jin, F.F.: Adaptive error feedback regulator design for 1 D heat equation. Automatica 113, 108810 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Guo, W., Jin, F.F.: Adaptive error feedback regulator design for 1D heat equation with unknown harmonic disturbance anti-collocated with control. IEEE Trans. Autom. Control 65, 824–830 (2020)

    Article  MATH  Google Scholar 

  24. Jiang, J.F., Guirao, J.L., Chen, H.T., Cao, D.Q.: The boundary control strategy for a fractional wave equation with external disturbances. Chaos, Solitons Fractals 121, 92–97 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, Y., Chen, Y.Q., Podlubny, I.: Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica 45, 1965–1969 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liang, J.S., Chen, Y.Q., Fullmer, R.: Boundary stabilization and disturbance rejection for time fractional order diffusion-wave equations. Nonlinear Dynam. 38, 339–354 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liang, J.S., Chen, Y.Q., Vinagre, B.M., Podlubny, I.: Fractional order boundary stabilization of a time-fractional wave equation, a chapter in Fractional Derivatives an Their Applications. Editors: A. Le Mehauté, J. A. Tenreiro Machado, J. C. Trigeassou and J. Sabatier. UBooks, Augsburg, Germany, (2005)

  28. Liu, J.J., Wang, J.M.: Active disturbance rejection control and sliding mode control of one-dimensional unstable heat equation with boundary uncertainties. IMA J. Math. Control Inform. 32, 97–117 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Liu, J.J., Wang, J.M.: Stabilization of one-dimensional wave equation with nonlinear boundary condition subject to boundary control matched disturbance. IEEE Trans. Autom. Control 64, 3068–3073 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lv, M.L., Yu, W.W., Cao, J.D., Baldi, S.: Consensus in high-power multiagent systems with mixed unknown control directions via hybrid Nussbaum-based control. IEEE Trans. Cybern (2020). https://doi.org/10.1109/TCYB.2020.3028171

    Article  Google Scholar 

  31. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  32. Mbodje, B., Gerard, M.: Boundary fractional derivative control of the wave equation. IEEE Trans. Autom. Control 40, 378–382 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mainardi, F.: Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical models. Imperial College Press, Singapore (2010)

    Book  MATH  Google Scholar 

  34. Pazy, A.: Semigroups of linear operators and applications to partial differential equations. Springer-Verlag, New York (1983)

    Book  MATH  Google Scholar 

  35. Povstenko, Y.Z.: Fractional heat conduction equation and associated thermal stress. J. Therm. Stresses 28, 83–102 (2005)

    Article  MathSciNet  Google Scholar 

  36. Pu, Y.F., Zhou, J.L., Yuan, X.: Fractional differential mask: a fractional differential-based approach for multiscale texture enhancement. IEEE Trans. Image Process 19, 491–511 (2010)

  37. Ren, Y., Zhao, Z.J., Zhang, C.L., Yang, Q.M., Hong, K.-S.: Adaptive neural-network boundary control for a flexible manipulator with input constraints and model uncertainties. IEEE Trans. Cybern. 51, 4796–4807 (2021)

    Article  Google Scholar 

  38. Smyshlyaev, A., Krstic, M.: Adaptive control of parabolic PDEs. Princeton University Press, Princeton, NJ (2010)

    Book  MATH  Google Scholar 

  39. Sheng, Y., Zhang, H., Zeng, Z.G.: Synchronization of reaction-diffusion neural networks with Dirichlet boundary conditions and infinite delays. IEEE Trans. Cybern 47, 3005–3017 (2017)

    Article  Google Scholar 

  40. Wang, J.W.: Dynamic boundary fuzzy control design of semilinear parabolic PDE systems with spatially noncollocated discrete observation. IEEE Trans. Cybern. 49, 3041–3051 (2019)

    Article  Google Scholar 

  41. Wang, Z.Y., Cao, J.D., Cai, Z.W., Rutkowski, L.: Anti-synchronization in fixed time for discontinuous reaction-diffusion neural networks with time-varying coefficients and time delay. IEEE Trans. Cybern. 50, 2758–2769 (2020)

    Article  Google Scholar 

  42. Zhang, Y.L., Zhu, M., Li, D.H., Wang, J.M.: ADRC dynamic stabilization of an unstable heat equation. IEEE Trans. Autom. Control 65, 4424–4429 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhou, H.C., Guo, B.Z.: Boundary feedback stabilization for an unstable time fractional reaction diffusion equations. SIAM J. Control Optim. 56, 75–101 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhou, H.C., Lv, C.W., Guo, B.Z., Chen, Y.Q.: Mittag-Leffler stabilization for an unstable time fractional anomalous diffusion equation with boundary control matched disturbance. Int. J. Robust Nonlin. Control 29, 4384–4401 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhou, H.C., Wu, Z.H., Guo, B.Z., Chen, Y.Q.: Boundary stabilization and disturbance rejection for a time fractional order diffusion-wave equation. IFAC-PapersOnLine 53, 3695–3700 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of Shanghai (No. 19ZR1400500), the National Natural Science Foundation of China (No. 62173348, 12161141013, 62273239) and Hunan Provincial Natural Science Foundation of China (No. 2021JJ20081).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-Cheng Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, RY., Zhou, HC. & Kou, CH. Boundary disturbance rejection for fractional distributed parameter systems via the sliding mode and Riesz basis approach. Nonlinear Dyn 111, 1355–1367 (2023). https://doi.org/10.1007/s11071-022-07897-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07897-3

Keywords

Navigation