Skip to main content
Log in

The extended 16th Hilbert problem for a class of discontinuous piecewise differential systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In order to understand the dynamics of the planar differential systems, the limit cycles play a main role, but in general their study is not easy. These last years, an increasing interest appeared for studying the limit cycles of some classes of piecewise differential systems, due to the rich applications of this kind of differential systems. This paper solves the extended 16th Hilbert problem for a family of discontinuous planar differential systems with two regions separated by the straight line \(x=0\). By using the first integrals, we prove that the maximum number of crossing limit cycles in the family of systems formed by a linear center and a class of Hamiltonian isochronous global center with a polynomial first integral of degree 2n is 5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Andronov, A., Vitt, A., Khaikin, S.: Theory of Oscillations. Pergamon Press, Oxford (1966)

    MATH  Google Scholar 

  2. Artés, J.C., Llibre, J., Medrado, J.C., Teixeira, M.A.: Piecewise linear differential systems with two real saddles. Math. Comput. Simul. 95, 13–22 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benterki, R., Llibre, J.: The solution of the second part of the 16th Hilbert problem for nine families of discontinuous piecewise differential systems. Nonlinear Dyn 102, 2453–2466 (2020). https://doi.org/10.1007/s11071-020-06045-z

    Article  Google Scholar 

  4. Bernardo, M. di., Budd, C. J., Champneys, A. R., Kowalczyk, P.: Piecewise-smooth dynamical systems: theory and applications. Appl. Math. Sci. Series 163, Springer-Verlag, London, (2008)

  5. Braga, D.C., Mello, L.F.: Limit cycles in a family of discontinuous piecewise linear differential systems with two zones in the plane. Nonlinear Dynam. 73, 1283–1288 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Diz-Pita, E., Llibre, J., Otero-Espinar, M.V., Valls, C.: The zero-Hopf bifurcations in the Kolmogorov systems of degree \(3\) in \({\mathbb{R} }^{3}\). Commun. Nonlinear Sci. Num. Simul. 95, 105621 (2021)

    Article  MATH  Google Scholar 

  7. Euzébio, R.D., Llibre, J.: On the number of limit cycles in discontinuous piecewise linear differential systems with two pieces separated by a straight line. J. Math. Anal. Appl. 424(1), 475–486 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Filippov, A.F.: Differential equations with discontinuous right-hand sides, translated from Russian. Mathematics and its Applications. (Soviet Series) Vol. 18, Kluwer Academic Publishers Group, Dordrecht, (1988)

  9. Freire, E., Ponce, E., Rodrigo, F., Torres, F.: Bifurcation sets of continuous piecewise linear systems with two zones. Int. J. Bifur. Chaos 8, 2073–2097 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hilbert, D.: Mathematische Probleme. Lecture, Second Internat. Congr. Math. (Paris, 1900), Nachr. Ges. Wiss. Göttingen Math. Phys. KL. (1900), 253–297; English transl., Bull. Amer. Math. Soc. 8 (1902), 437–479; Bull. (New Series) Amer. Math. Soc. 37 (2000): 407–436

  11. Ilyashenko, Yu.: Centennial history of Hilbert’s \(16\)th problem. Bull. (New Series) Amer. Math. Soc. 39, 301–354 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, J.: Hilbert’s \(16\)th problem and bifurcations of planar polynomial vector fields. Internat. J. Bifur. Chaos Appl. Sci. Engrg 13, 47–106 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Llibre, J., Novaes, D.D., Teixeira, M.A.: Maximum number of limit cycles for certain piecewise linear dynamical systems. Nonlinear Dyn. 82, 1159–1175 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Llibre, J., Swirszcz, G.: On the limit cycles of polynomial vector fields. Dyn. Contin. Discrete Impuls Syst. Ser. A Math. Anal. 18, 203–214 (2011)

    MathSciNet  MATH  Google Scholar 

  15. Llibre, J., Teixeira, M.A.: Piecewise linear differential systems with only centers can create limit cycles? Nonlinear Dyn. 91, 249–255 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Makarenkov, O., Lamb, J.S.W.: Dynamics and bifurcations of nonsmooth systems: a survey. Phys. D. 241, 1826–1844 (2012)

    Article  MathSciNet  Google Scholar 

  17. Mañosas, F., Villadelprat, J.: Area-preserving normalizations for centers of planar Hamiltonian systems. J. Differ. Equ. 197, 625–646 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sabatini, M.: A connection between isochronous Hamiltonian centers and the Jacobian conjecture. Nonlinear Analysis 34, 829–838 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Simpson, D.J.W.: Bifurcations in Piecewise-smooth continuous systems. World Scientific Series on Nonlinear Science A, Vol 69, World Scientific, Singapore, 2010

  20. Walker, R.J.: Algebraic curves. Reprint of the 1950th edition, Springer-Verlag, New York-Heidelberg, (1978)

Download references

Funding

The third author is partially supported by the Agencia Estatal de Investigación grant PID2019-104658GB-I00, and the H2020 European Research Council Grant MSCA-RISE-2017-777911.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebiha Benterki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The formulas of this appendix are now in the paper only for its revision; if the paper is accepted, then the appendix will come as a data attached file.

Here we provide the expressions \(A_i\), with \(i=0,\dots ,10\).

$$\begin{aligned} A_0= & {} \dfrac{1}{(a^2+\omega ^2\big )^{11}} \big ( b_1 c_1 a^{22}+\beta _1 \gamma _1 a^{22}\\&+11 b_1 c_1 \omega ^2 a^{20} +b d \beta _1^2 a^{20}+b b_1^2 d a^{20}+11 \\&\times \omega ^2 \beta _1 a^{20}+55 b_1 c_1 \omega ^4 a^{18} +10 b b_1^2 d \omega ^2 a^{18}\\&+10 b d \omega ^2 \beta _1^2 a^{18} +55 \omega ^4 \beta _1 \gamma _1 a^{18}\\&+165b_1 c_1\omega ^6 a^{16}+45 b b_1^2 d \omega ^4 a^{16}\\&+45 b d \omega ^4 \beta _1^2 a^{16}+165 \omega ^6 \beta _1 \gamma _1 a^{16}\\&+330 b_1 c_1 \omega ^8 a^{14}+120 b b_1^2 d \omega ^6 a^{14}\\&+120 b d \omega ^6 \beta _1^2 a^{14} +330 \omega ^8 \beta _1 \gamma _1 a^{14}\\&+462 b_1 c_1 \omega ^{10} a^{12} +210 b b_1^2 d \omega ^8 a^{12}\\&+210 b d \omega ^8 \beta _1^2 a^{12}+462 \omega ^{10} \beta _1 \gamma _1 a^{12}\\&+462 b_1 c_1 \omega ^{12} a^{10}+252b b_1^2 d \omega ^{10}a^{10}+252 b d \\&\times \omega ^{10} \beta _1^2 a^{10}+462 \omega ^{12}\beta _1 \gamma _1 a^{10}\\&+330 b_1 c_1\omega ^{14} a^8+210 b b_1^2 d\omega ^{12} a^8\\&+210 b d \omega ^{12} \beta _1^2 a^8 +330 \omega ^{14} \beta _1 \gamma _1 a^8\\&+165 b_1 c_1 \omega ^{16} a^6 +120 b b_1^2 d \omega ^{14} a^6\\&+120 b d\omega ^{14}+55 b_1 c_1 \omega ^{18} a^4\\&+165 \omega ^{16} \beta _1 \gamma _1 a^6+45 b b_1^2 d \omega ^{16} a^4\\&+45 b d \omega ^{16} \beta _1^2 a^4+55 \omega ^{18}\beta _1 \gamma _1 a^4\\&+11 b_1 c_1 \omega ^{20} a^2 +10 b b_1^2 d \omega ^{18} a^2\\&+10 b d \omega ^{18} \beta _1^2 a^2 +11\omega ^{20} \beta _1 \gamma _1a^2+b_1 c_1 \omega ^{22}\\&+b b_1^2 d \omega ^{20} +b d \omega ^{20} \beta _1^2 +2 \beta _1 (512 b^{11} d^{11} \beta _1^{11}\\&+3072 b^{10} d^{10} (a^2+\omega ^2) \gamma _1 \beta _1^{10} \\&+8448 b^9 d^9(a^2+\omega ^2)^2\gamma _1^2 \beta _1^9\\&+14080 b^8 d^8(a^2+\omega ^2)^3 \gamma _1^3 \beta _1^8\\&+15840b^7 d^7 (a^2+\omega ^2)^4 \gamma _1^4 \beta _1^7+12672 b^6 d^6 \\&\times (a^2 +\omega ^2)^5\gamma _1^5 \beta _1^6 +7392 b^5 d^5 (a^2+\omega ^2)^6\gamma _1^6\\&\times \beta _1^5 +3168 b^4 d^4 (a^2+\omega ^2)^7\gamma _1^7 \beta _1^4+990 b^3 d^3\\&(a^2 +\omega ^2)^8\gamma _1^8 \beta _1^3+220 b^2 d^2(a^2+\omega ^2)^9 \gamma _1^9 \beta _1^2\\&+33 b d (a^2+\omega ^2)^{10} \gamma _1^{10} \beta _1+3 (a^2 \\&+\omega ^2)^{11}\gamma _1^{11}) \delta ^2+\omega ^{22} \beta _1 \gamma _1 +(a^2+\omega ^2)^5 \\&\times (32 b^5 d^5 (2 b b_1 d +c_1(a^2+\omega ^2)) \beta _1^6\\&+96 b^4 d^4 (a^2 +\omega ^2) (2 b b_1 d+c_1(a^2\\&+\omega ^2))\gamma _1 \beta _1^5 +120 b^3 d^3(a^2+\omega ^2)^2(2 b b_1 d\\&+c_1 (a^2+\omega ^2) ) \gamma _1^2 \beta _1^4+80 b^2 d^2 (a^2+\omega ^2)^3\\&\times (2 b b_1 d +c_1 (a^2+\omega ^2))\gamma _1^3 \beta _1^3\\&+30 b d (a^2+\omega ^2)^4 (2b b_1 d \\&+c_1 (a^2+\omega ^2)) \gamma _1^4 \beta _1^2+6 (a^2+\omega ^2)^5(2 b b_1 d \\&+c_1(a^2+\omega ^2)) \gamma _1^5 \beta _1+b_1 (a^2+\omega ^2)^6 \gamma _1^6) \delta ) \\ A_1= & {} -\dfrac{1}{(a^2+\omega ^2\big )^{10}}\big (2 b d \beta _1^2 \delta (5 \gamma _1^3 (22 \beta _1 \delta \gamma _1^6\\&+3 b_1 \gamma _1+4 c_1 \beta _1) a^{18}+5 \gamma _1^2 (9 \gamma _1(22 \beta _1 \delta \gamma _1^6\\&+3 b_1 \gamma _1+4 c_1 \beta _1) \omega ^2 +2 b d \beta _1 (99 \beta _1 \delta \gamma _1^6\\&+8 b_1 \gamma _1+6 c_1 \beta _1)) a^{16} \\&+4 \gamma _1 (45 \gamma _1^2(22 \beta _1 \delta \gamma _1^6+3 b_1 \gamma _1+4 c_1 \beta _1) \omega ^4\\&+20 b d \beta _1 \gamma _1 (99 \beta _1 \delta \gamma _1^6+8 b_1 \gamma _1+6 c_1 \beta _1) \omega ^2 \\&+9 b^2 d^2\beta _1^2(5 b_1 \gamma _1+2 \beta _1 (66 \delta \gamma _1^6+c_1))) a^{14} \\&+4 (105 \gamma _1^3 (22 \beta _1 \delta \gamma _1^6+3 b_1 \gamma _1+4 \\&c_1 \beta _1) \omega ^6 +70 b d \beta _1 \gamma _1^2 (99 \beta _1 \delta \gamma _1^6 \\&+8 b_1 \gamma _1+6 c_1 \beta _1) \omega ^4+63 b^2 d^2 \beta _1^2\gamma _1(5 b_1 \gamma _1 \\&+2\beta _1(66 \delta \gamma _1^6+c_1)) \omega ^2+8 b^3 d^3 \beta _1^3 (462 \beta _1 \delta \gamma _1^6\\&+6 b_1 \gamma _1+c_1 \beta _1)) a^{12}+2(315 \\&\gamma _1^3(22\beta _1\delta \gamma _1^6+3 b_1 \gamma _1+4 c_1 \beta _1) \omega ^8\\&+280 b d \beta _1 \gamma _1^2 (99 \beta _1 \delta \gamma _1^6+8 b_1 \gamma _1+6 c_1 \beta _1)\omega ^6 \\&+378b^2d^2\beta _1^2 \gamma _1 (5 b_1 \gamma _1+2 \beta _1 (66 \delta \gamma _1^6+c_1)) \omega ^4\\&+96 b^3 d^3 \beta _1^3(462 \beta _1 \delta \gamma _1^6+6 b_1 \gamma _1+c_1 \\&\beta _1)\omega ^2+40 b^4 d^4\beta _1^4 (396 \beta _1 \delta \gamma _1^5+b_1)) a^{10}\\&+10(63 \gamma _1^3(22 \beta _1 \delta \gamma _1^6+3 b_1 \gamma _1+4 c_1 \beta _1) \\&\omega ^{10}+70b d \beta _1 \gamma _1^2 (99 \beta _1 \delta \gamma _1^6+8b_1 \gamma _1\\&+6 c_1 \beta _1) \omega ^8+126 b^2 d^2 \beta _1^2 \gamma _1 (5 b_1 \gamma _1+2 \beta _1 (66 \delta \\&\gamma _1^6+c_1)) \omega ^6 +48 b^3 d^3 \beta _1^3 (462 \beta _1 \delta \gamma _1^6+6 b_1 \gamma _1\\&+c_1 \beta _1) \omega ^4 +40 b^4 d^4 \beta _1^4 (396 \beta _1 \delta \gamma _1^5\\&+ b_1)\omega ^2 +4752b^5 d^5 \beta _1^6 \gamma _1^4 \delta ) a^8\\&+20 (21 \gamma _1^3(22 \beta _1 \delta \gamma _1^6+3 b_1 \gamma _1\\&+4 c_1\beta _1) \omega ^{12}+28 bd \beta _1 \gamma _1^2(99 \beta _1 \delta \gamma _1^6 \\&+8 b_1 \gamma _1+6 c_1 \beta _1) \omega ^{10}+63 b^2 d^2 \beta _1^2\gamma _1 (5 b_1 \gamma _1\\&+2 \beta _1 (66 \delta \gamma _1^6+c_1))\omega ^8 \\&+32 b^3 d^3 \beta _1^3(462 \beta _1 \delta \gamma _1^6+6 b_1 \gamma _1\\&+c_1 \beta _1) \omega ^6+40 b^4 d^4 \beta _1^4 (396 \beta _1 \delta \gamma _1^5+b_1)\omega ^4\\&+9504 b^5 d^5 \beta _1^6\gamma _1^4 \delta \omega ^2 +2464 b^6 d^6 \beta _1^7\gamma _1^3 \delta ) a^6\\&+4 (45 \gamma _1^3 (22 \beta _1 \delta \gamma _1^6+3 b_1 \gamma _1+4 c_1 \beta _1)\omega ^{14}\\&+70 b d \beta _1\gamma _1^2 (99 \beta _1 \delta \gamma _1^6+8 b_1 \gamma _1\\&+6 c_1 \beta _1) \omega ^{12}+189 b^2 d^2 \beta _1^2 \gamma _1 (5 b_1 \gamma _1 +2 \beta _1\\&\times (66 \delta \gamma _1^6+c_1)) \omega ^{10}+120 b^3 d^3 \beta _1^3(462 \beta _1 \delta \gamma _1^6\\&+6 b_1 \gamma _1 +c_1 \beta _1) \omega ^8+200 b^4 d^4 \beta _1^4(396\beta _1 \delta \gamma _1^5\\&+b_1) \omega ^6 +71280 b^5 d^5 \beta _1^6 \gamma _1^4 \delta \omega ^4\\&+36960 b^6 d^6 \beta _1^7 \gamma _1^3 \delta \omega ^2 +8448 b^7 d^7 \beta _1^8\gamma _1^2 \delta )a^4\\&\times (45 \gamma _1^3+(22 \beta _1 \delta \gamma _1^6+3 b_1 \gamma _1+4 c_1 \beta _1)\omega ^{16}\\&+80 b d \beta _1 \gamma _1^2(99 \beta _1 \delta \gamma _1^6+8 b_1 \gamma _1 \\&+6c_1\beta _1) \omega ^{14}+252b^2 d^2 \\&\beta _1^2 \gamma _1 (5 b_1 \gamma _1+2 \beta _1 (66 \delta \gamma _1^6+c_1))omega^{12}\\&+192 b^3 d^3 \beta _1^3 (462 \beta _1 \delta \gamma _1^6 +6 b_1 \gamma _1+c_1 \\&\beta _1) \omega ^{10}+400 b^4 d^4 \beta _1^4 (396 \beta _1 \delta \gamma _1^5+b_1) \omega ^8\\&+190080 b^5d^5\beta _1^6 \gamma _1^4 \delta \omega ^6+147840 b^6 d^6 \beta _1^7 \\&\gamma _1^3 \delta \omega ^4+67584 b^7 d^7 \beta _1^8 \gamma _1^2 \delta \omega ^2\\&+13824 b^8 d^8 \beta _1^9 \gamma _1 \delta ) a^2+2560 b^9 d^9 \beta _1^{10} \delta \\&+47520 b^5 d^5 \omega ^8 \beta _1^6 \gamma _1^4 \delta +49280 b^6 d^6\omega ^6 \beta _1^7 \gamma _1^3 \delta \\&+33792 b^7 d^7 \omega ^4 \beta _1^8\gamma _1^2 \delta +13824 b^8 d^8 \omega ^2 \beta _1^9 \gamma _1 \delta \\&+80 b^4 d^4\omega ^{10}\beta _1^4 (396 \beta _1 \delta \gamma _1^5+b_1)\\&+5 \omega ^{18} \gamma _1^3 (22 \beta _1 \delta \gamma _1^6+3 b_1 \gamma _1+4 c_1 \beta _1)\\&+10 b d \omega ^{16}\beta _1 \gamma _1^2 (99 \beta _1 \delta \gamma _1^6\\&+8 b_1 \gamma _1+6 c_1 \beta _1)+32 b^3 d^3 \omega ^{12} \beta _1^3\\&+6 b_1 \gamma _1+c_1 \beta _1)(462 \beta _1 \delta \gamma _1^6 +36 b^2 d^2\\&\omega ^{14} \beta _1^2 \gamma _1 (5 b_1 \gamma _1\\&+2 \beta _1 (66 \delta \gamma _1^6+c_1))\big ),\\ A_2= & {} \dfrac{1}{(a^2+\omega ^2)^9}\beta _1^2 \delta (5 \gamma _1^3 (22 \beta _1 \delta \gamma _1^6\\&+3 b_1 \gamma _1+4 c_1 \beta _1) a^{18}+5 \gamma _1^2 (9 \gamma _1 (22 \beta _1 \delta \gamma _1^6+3 \\&b_1 \gamma _1+4 c_1 \beta _1) \omega ^2+2 b d \beta _1 (99 \beta _1 \delta \gamma _1^6\\&+8 b_1 \gamma _1+6 c_1 \beta _1)) a^{16}+4 \gamma _1 (45 \gamma _1^2(22\beta _1 \\&\delta \gamma _1^6+3 b_1 \gamma _1 +4 c_1 \beta _1) \omega ^4 +20 b d \beta _1 \gamma _1 (99 \beta _1 \\&\delta \gamma _1^6 +8 b_1 \gamma _1 +6 c_1 \beta _1)\omega ^2+12 b^2 d^2\beta _1^2 (5 b_1 \gamma _1\\&+2 \beta _1 (66 \delta \gamma _1^6+c_1))) a^{14} +28 (15 \gamma _1^3 (22 \beta _1 \delta \gamma _1^6\\&+3 b_1 \gamma _1+4 c_1 \beta _1)\omega ^6+10 b d \beta _1 \gamma _1^2 (99 \beta _1 \delta \gamma _1^6\\&+8 b_1 \gamma _1+6 c_1 \beta _1) \omega ^4+12 b^2 d^2 \beta _1^2 \gamma _1 (5 b_1 \gamma _1\\&+2 \beta _1 (66\delta \gamma _1^6+c_1)) \omega ^2+2 b^3 d^3 \beta _1^3 (462 \beta _1 \delta \gamma _1^6\\&+6 b_1 \gamma _1+c_1 \beta _1)) a^{12}+2(315 \gamma _1^3 (22 \\&\beta _1\delta \gamma _1^6+3b_1 \gamma _1+4 c_1 \beta _1) \omega ^8\\&+280 b d \beta _1 \gamma _1^2 (99 \beta _1 \delta \gamma _1^6 +8 b_1 \gamma _1+6 c_1 \beta _1) \omega ^6\\&+504 b^2 d^2 \beta _1^2 \gamma _1(5 b_1 \gamma _1 +2 \beta _1 (66 \delta \gamma _1^6+c_1)) \omega ^4 \\&+168 b^3 d^3 \beta _1^3(462 \beta _1 \delta \gamma _1^6+6 b_1 \gamma _1+c_1 \beta _1) \omega ^2\\&+88 b^4 d^4 \beta _1^4 (396 \beta _1 \delta \gamma _1^5+b_1)) a^{10}\\&+10 (63 \gamma _1^3 (22 \beta _1 \delta \gamma _1^6+3 b_1 \gamma _1 +4 c_1\beta _1)\omega ^{10} \\&+70 b d \beta _1 \gamma _1^2 (99 \beta _1 \delta \gamma _1^6+8 b_1 \gamma _1+6 c_1 \beta _1) \omega ^8\\&+168 b^2 d^2 \beta _1^2 \gamma _1(5 b_1 \gamma _1+2 \beta _1 (66 \delta \gamma _1^6+c_1))\omega ^6\\&+84 b^3 d^3 \beta _1^3 (462 \beta _1 \delta \gamma _1^6 +6 b_1 \gamma _1+c_1\beta _1)\omega ^4\\&+88 b^4 d^4 \beta _1^4 (396 \beta _1 \delta \gamma _1^5+b_1) \omega ^2\\&+12672 b^5 d^5 \beta _1^6 \gamma _1^4 \delta ) a^8 +20(21 \gamma _1^3 (22 \beta _1 \delta \gamma _1^6\\&+3 b_1 \gamma _1+4 c_1 \beta _1) \omega ^{12}\\&+28 b d \beta _1\gamma _1^2 (99 \beta _1 \delta \gamma _1^6+8 b_1 \gamma _1+6 c_1 \beta _1) \omega ^{10}\\&+84 b^2 d^2 \beta _1^2 \gamma _1 (5 b_1\gamma _1+2 \beta _1 (66 \delta \\&\gamma _1^6+c_1)) \omega ^8+56 b^3 d^3\beta _1^3 (462 \beta _1 \delta \gamma _1^6\\&+6 b_1 \gamma _1+c_1 \beta _1) \omega ^6+88 b^4 d^4 \beta _1^4 (396 \beta _1 \delta \gamma _1^5\\&+b_1)\omega ^4+25344 b^5 d^5 \beta _1^6 \gamma _1^4 \delta \omega ^2\\&+7744 b^6 d^6 \beta _1^7 \gamma _1^3 \delta ) a^6+4 (45 \gamma _1^3(22 \beta _1 \delta \gamma _1^6\\&+3 b_1\gamma _1 +4 c_1 \beta _1) \omega ^{14}+70 b d \beta _1 \gamma _1^2 (99 \beta _1 \delta \gamma _1^6\\&+8 b_1 \gamma _1+6 c_1 \beta _1) \omega ^{12}+252 b^2 d^2 \beta _1^2 \gamma _1(5 b_1\gamma _1 \\&+2 \beta _1 (66 \delta \gamma _1^6+c_1)) \omega ^{10}\\&+210 b^3 d^3 \beta _1^3 (462 \beta _1 \delta \gamma _1^6+6 b_1 \gamma _1+c_1 \beta _1)\omega ^8\\&+440 b^4 d^4 \beta _1^4 (396 \beta _1 \delta \gamma _1^5+b_1) \omega ^6\\&+190080 b^5 d^5 \beta _1^6 \gamma _1^4 \delta \omega ^4\\&+116160 b^6 d^6 \beta _1^7 \gamma _1^3 \delta \omega ^2+30624 b^7 d^7 \\&\beta _1^8 \gamma _1^2 \delta ) a^4+(45 \gamma _1^3(22 \beta _1 \delta \gamma _1^6 +3 b_1 \gamma _1\\&+4 c_1 \beta _1) \omega ^{16}+80 b d \beta _1\gamma _1^2(99 \beta _1 \delta \gamma _1^6+8 b_1 \gamma _1 \\&+6 c_1 \beta _1) \omega ^{14}+336 b^2 d^2 \beta _1^2 \gamma _1(5 b_1 \gamma _1\\&+2 \beta _1 (66 \delta \gamma _1^6+c_1))\omega ^{12}+336 b^3 d^3 \beta _1^3(462 \beta _1 \delta \\&\gamma _1^6 +6 b_1 \gamma _1+c_1 \beta _1) \omega ^{10}\\&+880 b^4 d^4 \beta _1^4 (396 \beta _1 \delta \gamma _1^5+b_1) \omega ^8\\&+506880 b^5 d^5 \beta _1^6 \gamma _1^4 \delta \omega ^6 +464640 b^6 d^6\beta _1^7 \\&\gamma _1^3\delta \omega ^4 +244992 b^7 d^7 \beta _1^8 \gamma _1^2 \delta \omega ^2 +56832 b^8 d^8 \\&\beta _1^9 \gamma _1 \delta ) a^2 +11776 b^9 d^9 \beta _1^{10}\delta +126720 b^5 d^5 \\&\omega ^8 \beta _1^6 \gamma _1^4 \delta +154880 b^6 d^6 \omega ^6 \beta _1^7 \gamma _1^3 \delta \\&+122496 b^7 d^7 \omega ^4 \beta _1^8 \gamma _1^2 \delta +56832 b^8 d^8 \omega ^2 \beta _1^9 \gamma _1 \delta \\&+176 b^4 d^4 \omega ^{10} \beta _1^4 (396 \beta _1\delta \gamma _1^5+b_1) \\&+5 \omega ^{18} \gamma _1^3 (22 \beta _1 \delta \gamma _1^6+3 b_1 \gamma _1+4 c_1 \beta _1)\\&+10 b d \omega ^{16} \beta _1 \gamma _1^2 (99 \beta _1+8 b_1 \gamma _1+6 c_1 \beta _1)\delta \gamma _1^6\\&+56 b^3 d^3 \omega ^{12} \beta _1^3(462 \beta _1 \delta \gamma _1^6 +6 b_1 \gamma _1+c_1 \beta _1)\\&+48 b^2 d^2 \omega ^{14}beta_1^2 \gamma _1 \\&(5 b_1 \gamma _1 +2 \beta _1 (66 \delta \gamma _1^6+c_1))),\\ A_3= & {} -\dfrac{1}{\big (a^2+\omega ^2\big )^8}(4 b \beta _1^4 d \delta (15 a^{14} b_1 \gamma _1^2\\&+6 a^{14} \beta _1 c_1 \gamma _1+36 a^{12} b b_1 \beta _1 \gamma _1 d+6 a^{12} b \\&\beta _1^2 c_1 d+105 a^{12} b_1 \gamma _1^2 \omega ^2+42 a^{12} \beta _1 c_1 \gamma _1 \omega ^2\\&+26 a^{10} b^2 b_1 \beta _1^2 d^2+216 a^{10} b b_1 \beta _1\\&\gamma _1 d \omega ^2+36 a^{10} b \beta _1^2 c_1 d \omega ^2\\&+315 a^{10} b_1 \gamma _1^2 \omega ^4+126 a^{10} \beta _1 c_1 \gamma _1 \omega ^4\\&+130a^8 b^2 b_1 \beta _1^2 d^2 \omega ^2+540 a^8 b b_1 \beta _1 \gamma _1 d \omega ^4\\&+90 a^8 b \beta _1^2 c_1 d \omega ^4+525 a^8 b_1 \gamma _1^2 \omega ^6\\&+210 a^8 \beta _1 c_1 \gamma _1 \omega ^6+260 a^6 b^2 b_1 \beta _1^2 d^2 \omega ^4\\&+720 a^6 b b_1\beta _1 \gamma _1 d \omega ^6 +120 a^6b \beta _1^2 c_1 d \omega ^6\\&+525 a^6 b_1\gamma _1^2 \omega ^8+210 a^6 \beta _1 c_1 \gamma _1 \omega ^8\\&+260 a^4 b^2 b_1 \beta _1^2 d^2 \omega ^6 +540 a^4 b b_1 \beta _1\gamma _1 d \omega ^8\\&+90 a^4 b \beta _1^2 c_1 d \omega ^8+315 a^4 b_1 \gamma _1^2 \omega ^{10}\\&+126 a^4 \beta _1 c_1 \gamma _1 \omega ^{10}+130 a^2 b^2 b_1 \beta _1^2 d^2 \omega ^8\\&+4 \beta _1 \delta (4368 b^6 \beta _1^6 \gamma _1 d^6(a^2+\omega ^2)\\&+8184b^5 \beta _1^5 \gamma _1^2 d^5 (a^2+\omega ^2)^2 +8800 b^4 \beta _1^4 \gamma _1^3 d^4 \\&(a^2+\omega ^2)^3 +5940 b^3 \beta _1^3 \gamma _1^4 d^3 (a^2+\omega ^2)^4\\&+2574 b^2 \beta _1^2 \gamma _1^5 d^2 (a^2+\omega ^2)^5+693 b \beta _1 \gamma _1^6 \\&d (a^2 +\omega ^2)^6+99 \gamma _1^7 (a^2+\omega ^2)^7+2574\\&+1024 b^7 \beta _1^7 d^7)+216 a^2 b b_1 \beta _1 \gamma _1 d \omega ^{10} b \beta _1^2c_1 d\\&\omega ^{10}+105 a^2 b_1 \gamma _1^2 \omega ^{12} +42 a^2 \beta _1 c_1 \gamma _1 \omega ^{12}\\&+26 b^2 b_1 \beta _1^2 d^2 \omega ^{10}+36 a^2 +36 b b_1\beta _1\gamma _1 d \omega ^{12}\\&+6 b \beta _1^2 c_1 d \omega ^{12} +15 b_1 \gamma _1^2 \omega ^{14}+6 \beta _1 c_1 \gamma _1 \omega ^{14})),\\ A_4= & {} -\dfrac{1}{(a^2 + \omega ^2)^7}\big (\beta _1^4 \delta (15 a^{14} b_1 \gamma _1^2\\&+6 a^{14} \beta _1 c_1 \gamma _1+36 a^{12} b b_1 \beta _1 \gamma _1 d+6 a^{12} b \beta _1^2 c_1 \\&d+105 a^{12} b_1\gamma _1^2 \omega ^2+42 a^{12} \beta _1 c_1 \gamma _1 \omega ^2\\&+36 a^{10} b^2 b_1 \beta _1^2 d^2+216 a^{10} b b_1 \beta _1 \gamma _1 d \\&\omega ^2+36 a^{10} b \beta _1^2 c_1 d \omega ^2 +315 a^{10} b_1 \gamma _1^2 \omega ^4\\&+126 a^{10} \beta _1 c_1 \gamma _1 \omega ^4+180 a^8 b^2 b_1 \beta _1^2 d^2 \omega ^2\\&+540 a^8 b b_1 \beta _1 \gamma _1 d \omega ^4 +90 a^8b \beta _1^2 c_1 d \omega ^4\\&+525a^8 b_1 \gamma _1^2 \omega ^6 +360 a^6 b^2 b_1 \beta _1^2 d^2 \omega ^4\\&+720 a^6 b b_1 \beta _1\gamma _1 d \omega ^6 +120 a^6 b \beta _1^2 c_1 d \omega ^6 \\&+525 a^6 b_1 \gamma _1^2 \omega ^8+210 a^6 \beta _1 c_1 \gamma _1 \omega ^8\\&+360 a^4 b^2 b_1 \beta _1^2 d^2 \omega ^6+540 a^4 b b_1 \beta _1 \gamma _1 d \omega ^8 \\&+90 a^4 b \beta _1^2 c_1 d \omega ^8+315a^4 b_1 \gamma _1^2 \omega ^{10} \\&+126 a^4 \beta _1 c_1 \gamma _1 \omega ^{10} +180 a^2 b^2 b_1 \beta _1^2 d^2 \omega ^8 \\&+4 \beta _1 \delta (14208b^6 \beta _1^6\gamma _1 d^6 (a^2+ \omega ^2) \\&+22704 b^5 \beta _1^5 \gamma _1^2 d^5(a^2+\omega ^2)^2\\&+20240 b^4 \beta _1^4 \gamma _1^3d^4 (a^2+\omega ^2)^3+10890 b^3 \\&\beta _1^3\gamma _1^4 d^3(a^2+\omega ^2)^4+3564 b^2 \beta _1^2 \gamma _1^5 d^2 \\&(a^2+\omega ^2)^5 +693 b \beta _1 \gamma _1^6 d (a^2+\omega ^2)^6\\&+99 \gamma _1^7(a^2+\omega ^2)^7+3824 b^7 \beta _1^7 d^7)\\&+216 a^2 b b_1 \beta _1 \gamma _1 d \omega ^{10} +36 a^2 b \beta _1^2 c_1d \omega ^{10} \\&+105 a^2b_1 \gamma _1^2\omega ^{12}+42 a^2 \beta _1c_1 \gamma _1 \omega ^{12}\\&+36 b^2 b_1 \beta _1^2 d^2 \omega ^{10}+36 b b_1 \beta _1 \gamma _1 d \omega ^{12}+6 \\&b \beta _1^2 c_1 d\omega ^{12}+15b_1 \gamma _1^2 \omega ^{14}+6 \beta _1 c_1 \gamma _1 \omega ^{14})\big ),\\ A_5= & {} -\dfrac{1}{(a^2 + \omega ^2)^6}(2 b \beta _1^6 d \delta (-(a^2\\&+\omega ^2) ((a^2+\omega ^2) (44 \beta _1 \gamma _1^2 \delta (340 b^2 \beta _1^2 \gamma _1 d^2 (a^2\\&+ \omega ^2)+135 b \beta _1\gamma _1^2 d (a^2+\omega ^2)^2\\&+27 \gamma _1^3 (a^2+\omega ^2)^3+480 b^3 \beta _1^3 d^3)+3 b_1 (a^2+\\&\omega ^2)^3)+15936 b^4 \beta _1^5 \gamma _1 d^4 \delta )-5024 b^5 \beta _1^6 d^5 \delta )),\\ A_6= & {} -\dfrac{1}{(a^2 + \omega ^2)^5}\big (\beta _1^6 \delta ((a^2+\omega ^2) \\&((a^2+\omega ^2) (44 \beta _1 \gamma _1^2 \delta (160 b^2 \beta _1^2 \gamma _1 d^2 (a^2+\omega ^2\\&+45 b \beta _1 \gamma _1^2 d (a^2+\omega ^2)^2+9 \gamma _1^3 (a^2+\omega ^2)^3\\&+300 b^3 \beta _1^3 d^3)+b_1 (a^2+\omega ^2)^3)\\&+12480 b^4 \beta _1^5 \gamma _1 d^4 \delta +4736 b^5 \beta _1^6 d^5 \delta \big ),\\ A_7= & {} -\dfrac{1}{(a^2 + \omega ^2)^4}(-80 b \beta _1^9 d \delta ^2 (42 b^2 \beta _1^2 \gamma _1 d^2 (a^2\\&+\omega ^2) +33 b \beta _1 \gamma _1^2 d (a^2+\omega ^2)^2+\\&11\gamma _1^3 (a^2+\omega ^2)^3+20 b^3 \beta _1^3 d^3)),\\ A_8= & {} \dfrac{1}{(a^2 + \omega ^2)^3}\big (10 \beta _1^9 \delta ^2 \big (60 b^2 \beta _1^2 \gamma _1 d^2 \big (a^2+w^2\big )\\&+33 b \beta _1 \gamma _1^2 d \big (a^2+w^2\big )^2+11\gamma _1^3\\&\big (a^2+w^2\big )^3+38 b^3 \beta _1^3 d^3\big )\big ),\\ A_9= & {} -\dfrac{60 b \beta _1^{11} d \delta ^2 \left( \gamma _1 \left( a^2+w^2\right) +b \beta _1 d\right) }{\left( a^2+w^2\right) ^2},\\ A_{10}= & {} \dfrac{6 \beta _1^{11} \delta ^2 \left( \gamma _1 \left( a^2+w^2\right) +b \beta _1 d\right) }{a^2+w^2}. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barkat, M., Benterki, R. & Llibre, J. The extended 16th Hilbert problem for a class of discontinuous piecewise differential systems. Nonlinear Dyn 111, 1475–1484 (2023). https://doi.org/10.1007/s11071-022-07891-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07891-9

Keywords

Mathematics Subject Classification

Navigation