Abstract
Structural resonance involves the absorption of inertial loads by a tuned structural elasticity: a process playing a key role in a wide range of biological and technological systems, including many biological and bio-inspired locomotion systems. Conventional linear and nonlinear resonant states typically exist at specific discrete frequencies and specific symmetric waveforms. This discreteness can be an obstacle to resonant control modulation: deviating from these states, by modulating waveform asymmetry or drive frequency, generally leads to losses in system efficiency. Here, we demonstrate a new strategy for achieving these modulations at no loss of energetic efficiency. Leveraging fundamental advances in nonlinear dynamics, we characterise a new form of structural resonance: band-type resonance, describing a continuous band of energetically optimal resonant states existing around conventional discrete resonant states. These states are a counterexample to the common supposition that deviation from a linear (or nonlinear) resonant frequency necessarily involves a loss of efficiency. We demonstrate how band-type resonant states can be generated via a spectral shaping approach: with small modifications to the system kinematic and load waveforms, we construct sets of frequency- and asymmetry-modulated resonant states that show equal energetic optimality to their conventional discrete analogues. The existence of these non-discrete resonant states in a huge range of oscillators—linear and nonlinear, in many different physical contexts—is a new dynamical systems phenomenon. It has implications not only for biological and bio-inspired locomotion systems but for a constellation of forced oscillator systems across physics, engineering, and biology.
This is a preview of subscription content,
to check access.






Data availability
No datasets were generated or utilised in this study.
Notes
Indeed, it appears the case that the value of \({\overline{P} }_{\left|F\right|}\) which is invariant over the elastic-bound region is necessarily the global minimum of \({\overline{P} }_{\left|F\right|}\) over all possible elasticities—though this point deserves further theoretical treatment.
A technical point: in this PEA system, a triangle-type waveform defined by Eq. 12 allows only a reduction in frequency relative to the initial simple-harmonic waveform. Obtaining an increase in frequency is relatively simple. We can (i) define the initial state as multiharmonic (\(R\ne 0\)) instead of single-harmonic (\(R=0\)), or (ii) choose an alternative generative ODE, \(\ddot{x}=h\left(x\right)\): e.g., \(h\left(x\right)\propto -\mathrm{sgn}x{\left|x\right|}^{n}\), \(0<n\le 1\), which generates increases in frequency over a sine wave (\(n=\) 1). There is scope for a theoretical treatment of the relationship between \(h\left(x\right)\) and the frequency-band resonant states it generates—we leave such a treatment to future work.
References
Killingbeck, J.P.: Mathematical Techniques and Physical Applications. Elsevier, Saint Louis (2014)
Goldstein, H., Poole, C.P., Safko, J.L.: Classical Mechanics. Addison Wesley, Munich (2008)
Thomsen, J.J.: Vibrations and Stability: Advanced Theory, Analysis, and Tools. Springer, Berlin (2021)
Ibrahim, R.A.: Oscillons, walking droplets, and skipping stones (an overview). Nonlinear Dyn. 104, 1829–1888 (2021). https://doi.org/10.1007/s11071-021-06442-y
Solomon, T.H., Mezić, I.: Uniform resonant chaotic mixing in fluid flows. Nature 425, 376–380 (2003). https://doi.org/10.1038/nature01993
Inagaki, M., Murata, O., Kondoh, T., Abe, K.: Numerical prediction of fluid-resonant oscillation at low Mach number. AIAA J. 40, 1823–1829 (2002). https://doi.org/10.2514/2.1859
Akram, M.J., Saif, F.: Complex dynamics of nano-mechanical membrane in cavity optomechanics. Nonlinear Dyn. 83, 963–970 (2016). https://doi.org/10.1007/s11071-015-2380-y
Chen, W., Roelli, P., Hu, H., Verlekar, S., Amirtharaj, S.P., Barreda, A.I., Kippenberg, T.J., Kovylina, M., Verhagen, E., Martínez, A., Galland, C.: Continuous-wave frequency upconversion with a molecular optomechanical nanocavity. Science 374, 1264–1267 (2021). https://doi.org/10.1126/science.abk3106
Wang, F., Dukovic, G., Brus, L.E., Heinz, T.F.: The optical resonances in carbon nanotubes arise from excitons. Science 308, 838–841 (2005). https://doi.org/10.1126/science.1110265
Bird, J.O.: Electrical Circuit Theory and Technology. Newnes, Oxford (2007)
Jothimurugan, R., Thamilmaran, K., Rajasekar, S., Sanjuán, M.A.F.: Multiple resonance and anti-resonance in coupled Duffing oscillators. Nonlinear Dyn. 83, 1803–1814 (2016). https://doi.org/10.1007/s11071-015-2447-9
Zhang, B., Shu, X.: Fractional-Order Electrical Circuit Theory. Springer, Cham (2022)
Karev, A., Hagedorn, P.: Asynchronous parametric excitation: validation of theoretical results by electronic circuit simulation. Nonlinear Dyn. 102, 555–565 (2020). https://doi.org/10.1007/s11071-020-05870-6
Shuvaev, A., Muravev, V.M., Gusikhin, P.A., Gospodarič, J., Pimenov, A., Kukushkin, I.V.: Discovery of two-dimensional electromagnetic plasma waves. Phys. Rev. Lett. 126, 136801 (2021). https://doi.org/10.1103/PhysRevLett.126.136801
Qi, Z., Chen, Q., Wang, M., Li, B.: New mixed solutions generated by velocity resonance in the (2+1)-dimensional Sawada–Kotera equation. Nonlinear Dyn. 108, 1617–1626 (2022). https://doi.org/10.1007/s11071-022-07248-2
Rajasekar, S., Sanjuan, M.A.F.: Nonlinear Resonances. Springer, Cham (2016)
Kartashova, E.: Nonlinear Resonance Analysis: Theory, Computation, Applications. Cambridge University Press, Cambridge (2011)
Awrejcewicz, J. (ed.): Resonance. InTech, London (2017)
Gammaitoni, L., Hänggi, P., Jung, P., Marchesoni, F.: Stochastic resonance. Rev. Mod. Phys. 70, 223–287 (1998). https://doi.org/10.1103/RevModPhys.70.223
Pons, A., Beatus, T.: Distinct forms of resonant optimality within insect indirect flight motors. J. R. Soc. Interface (2022). https://doi.org/10.1098/rsif.2022.0080
Ma, T., Zhang, H.: Reaping the potentials of nonlinear energy harvesting with tunable damping and modulation of the forcing functions. Appl. Phys. Lett. 104, 214104 (2014). https://doi.org/10.1063/1.4879846
Zhang, H., Ma, T.: Roles of the excitation in harvesting energy from vibrations. PLoS ONE 10, e0141299 (2015). https://doi.org/10.1371/journal.pone.0141299
Zhang, H., Ma, T., Xu, N.S.: New insights into vibration-based energy harvesting. In: Proceedings of the SPIE 9435, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, pp. 943504, SPIE, San Diego (2015)
Zhang, H., Corr, L.R., Ma, T.: Issues in vibration energy harvesting. J. Sound Vib. 421, 79–90 (2018). https://doi.org/10.1016/j.jsv.2018.01.057
Pons, A., Beatus, T.: Elastic-bound conditions for energetically optimal elasticity and their implications for biomimetic propulsion systems. Nonlinear Dyn. 108, 2045–2074 (2022). https://doi.org/10.1007/s11071-022-07325-6
Vakakis, A.F., Gendelman, O.V., Bergman, L.A., Mojahed, A., Gzal, M.: Nonlinear targeted energy transfer: state of the art and new perspectives. Nonlinear Dyn. 108, 711–741 (2022). https://doi.org/10.1007/s11071-022-07216-w
Brand, O., Dufour, I., Heinrich, S.M., Josse, F. (eds.): Resonant MEMS: Fundamentals, Implementation and Application. Wiley, Weinheim (2015)
Ilyas, S., Alfosail, F.K., Bellaredj, M.L.F., Younis, M.I.: On the response of MEMS resonators under generic electrostatic loadings: experiments and applications. Nonlinear Dyn. 95, 2263–2274 (2019). https://doi.org/10.1007/s11071-018-4690-3
Indeitsev, D.A., Belyaev, Y.V., Lukin, A.V., Popov, I.A.: Nonlinear dynamics of MEMS resonator in PLL-AGC self-oscillation loop. Nonlinear Dyn. 104, 3187–3204 (2021). https://doi.org/10.1007/s11071-021-06586-x
Ruzziconi, L., Jaber, N., Kosuru, L., Bellaredj, M.L., Younis, M.I.: Internal resonance in the higher-order modes of a MEMS beam: experiments and global analysis. Nonlinear Dyn. 103, 2197–2226 (2021). https://doi.org/10.1007/s11071-021-06273-x
Guillon, S., Saya, D., Mazenq, L., Perisanu, S., Vincent, P., Lazarus, A., Thomas, O., Nicu, L.: Effect of non-ideal clamping shape on the resonance frequencies of silicon nanocantilevers. Nanotechnology 22, 245501 (2011). https://doi.org/10.1088/0957-4484/22/24/245501
Gutschmidt, S., Gottlieb, O.: Nonlinear dynamic behavior of a microbeam array subject to parametric actuation at low, medium and large DC-voltages. Nonlinear Dyn. 67, 1–36 (2012). https://doi.org/10.1007/s11071-010-9888-y
Hornstein, S., Gottlieb, O.: Nonlinear dynamics, stability and control of the scan process in noncontacting atomic force microscopy. Nonlinear Dyn. 54, 93–122 (2008). https://doi.org/10.1007/s11071-008-9335-5
Chandrashekar, A., Belardinelli, P., Staufer, U., Alijani, F.: Robustness of attractors in tapping mode atomic force microscopy. Nonlinear Dyn. 97, 1137–1158 (2019). https://doi.org/10.1007/s11071-019-05037-y
Rega, G., Settimi, V.: Bifurcation, response scenarios and dynamic integrity in a single-mode model of noncontact atomic force microscopy. Nonlinear Dyn. 73, 101–123 (2013). https://doi.org/10.1007/s11071-013-0771-5
Berardengo, M., Manzoni, S., Thomas, O., Vanali, M.: Piezoelectric resonant shunt enhancement by negative capacitances: optimisation, performance and resonance cancellation. J. Intell. Mater. Syst. Struct. 29, 2581–2606 (2018). https://doi.org/10.1177/1045389X18770874
Shami, Z.A., Giraud-Audine, C., Thomas, O.: A nonlinear piezoelectric shunt absorber with 2:1 internal resonance: experimental proof of concept. Smart Mater. Struct. 31, 035006 (2022). https://doi.org/10.1088/1361-665X/ac4ab5
Shami, Z.A., Giraud-Audine, C., Thomas, O.: A nonlinear piezoelectric shunt absorber with a 2:1 internal resonance: theory. Mech. Syst. Signal Process. 170, 108768 (2022). https://doi.org/10.1016/j.ymssp.2021.108768
Xia, Y., Ruzzene, M., Erturk, A.: Bistable attachments for wideband nonlinear vibration attenuation in a metamaterial beam. Nonlinear Dyn. 102, 1285–1296 (2020). https://doi.org/10.1007/s11071-020-06008-4
Cveticanin, L., Zukovic, M., Cveticanin, D.: Influence of nonlinear subunits on the resonance frequency band gaps of acoustic metamaterial. Nonlinear Dyn. 93, 1341–1351 (2018). https://doi.org/10.1007/s11071-018-4263-5
Hrncir, M., Gravel, A.-I., Schorkopf, D.L.P., Schmidt, V.M., Zucchi, R., Barth, F.G.: Thoracic vibrations in stingless bees (Melipona seminigra): resonances of the thorax influence vibrations associated with flight but not those associated with sound production. J. Exp. Biol. 211, 678–685 (2008). https://doi.org/10.1242/jeb.013920
Jankauski, M.A.: Measuring the frequency response of the honeybee thorax. Bioinspir. Biomim. 15, 046002 (2020). https://doi.org/10.1088/1748-3190/ab835b
Gau, J., Gravish, N., Sponberg, S.: Indirect actuation reduces flight power requirements in Manduca sexta via elastic energy exchange. J. R. Soc. Interface 16, 20190543 (2019). https://doi.org/10.1098/rsif.2019.0543
Gau, J., Gemilere, R., Lynch, J., Gravish, N., Sponberg, S.: Rapid frequency modulation in a resonant system: aerial perturbation recovery in hawkmoths. Proc. R. Soc. B Biol. Sci. 288, 20210352 (2021). https://doi.org/10.1098/rspb.2021.0352
Lynch, J., Gau, J., Sponberg, S., Gravish, N.: Dimensional analysis of spring-wing systems reveals performance metrics for resonant flapping-wing flight. J. R. Soc. Interface 18, 20200888 (2021). https://doi.org/10.1098/rsif.2020.0888
Lehmann, F.O., Dickinson, M.H.: The control of wing kinematics and flight forces in fruit flies (Drosophila spp.). J. Exp. Biol. 201, 385 (1998). https://doi.org/10.1242/jeb.201.3.385
Deora, T., Singh, A.K., Sane, S.P.: Biomechanical basis of wing and haltere coordination in flies. Proc. Natl. Acad. Sci. 112, 1481–1486 (2015). https://doi.org/10.1073/pnas.1412279112
Hoover, A., Miller, L.: A numerical study of the benefits of driving jellyfish bells at their natural frequency. J. Theor. Biol. 374, 13–25 (2015). https://doi.org/10.1016/j.jtbi.2015.03.016
Hoover, A.P., Porras, A.J., Miller, L.A.: Pump or coast: the role of resonance and passive energy recapture in medusan swimming performance. J. Fluid Mech. 863, 1031–1061 (2019). https://doi.org/10.1017/jfm.2018.1007
Hoover, A.P., Xu, N.W., Gemmell, B.J., Colin, S.P., Costello, J.H., Dabiri, J.O., Miller, L.A.: Neuromechanical wave resonance in jellyfish swimming. Proc. Natl. Acad. Sci. 118, e2020025118 (2021). https://doi.org/10.1073/pnas.2020025118
Bhalla, A.P.S., Griffith, B.E., Patankar, N.A.: A forced damped oscillation framework for undulatory swimming provides new insights into how propulsion arises in active and passive swimming. PLOS Comput. Biol. 9, e1003097 (2013). https://doi.org/10.1371/journal.pcbi.1003097
Kohannim, S., Iwasaki, T.: Analytical insights into optimality and resonance in fish swimming. J. R. Soc. Interface 11, 20131073 (2014). https://doi.org/10.1098/rsif.2013.1073
Tytell, E.D., Hsu, C.-Y., Fauci, L.J.: The role of mechanical resonance in the neural control of swimming in fishes. Zoology 117, 48–56 (2014). https://doi.org/10.1016/j.zool.2013.10.011
Ahlborn, B.K., Blake, R.W.: Walking and running at resonance. Zoology 105, 165–174 (2002). https://doi.org/10.1078/0944-2006-00057
Bujard, T., Giorgio-Serchi, F., Weymouth, G.D.: A resonant squid-inspired robot unlocks biological propulsive efficiency. Sci. Robot. 6, eabd2971 (2021). https://doi.org/10.1126/scirobotics.abd2971
Zhang, C., Rossi, C.: A review of compliant transmission mechanisms for bio-inspired flapping-wing micro air vehicles. Bioinspir. Biomim. 12, 025005 (2017). https://doi.org/10.1088/1748-3190/aa58d3
Kaynak, M., Ozcelik, A., Nourhani, A., Lammert, P.E., Crespi, V.H., Huang, T.J.: Acoustic actuation of bioinspired microswimmers. Lab Chip 17, 395–400 (2017). https://doi.org/10.1039/C6LC01272H
Liu, J., Ruan, H.: Modeling of an acoustically actuated artificial micro-swimmer. Bioinspir. Biomim. 15, 036002 (2020). https://doi.org/10.1088/1748-3190/ab6a61
Ramananarivo, S., Godoy-Diana, R., Thiria, B.: Passive elastic mechanism to mimic fish-muscle action in anguilliform swimming. J. R. Soc. Interface 10, 20130667 (2013). https://doi.org/10.1098/rsif.2013.0667
Collins, S., Ruina, A., Tedrake, R., Wisse, M.: Efficient bipedal robots based on passive-dynamic walkers. Science 307, 1082–1085 (2005). https://doi.org/10.1126/science.1107799
Haldane, D.W., Plecnik, M.M., Yim, J.K., Fearing, R.S.: Robotic vertical jumping agility via series-elastic power modulation. Sci. Robot. 1, eaag2048 (2016). https://doi.org/10.1126/scirobotics.aag2048
Bolivar Nieto, E.A., Rezazadeh, S., Gregg, R.D.: minimizing energy consumption and peak power of series elastic actuators: a convex optimization framework for elastic element design. IEEE ASME Trans. Mechatron. 24, 1334–1345 (2019). https://doi.org/10.1109/TMECH.2019.2906887
Taha, H.E., Nayfeh, A.H., Hajj, M.R.: Saturation-based actuation for flapping MAVs in hovering and forward flight. Nonlinear Dyn. 73, 1125–1138 (2013). https://doi.org/10.1007/s11071-013-0857-0
Bauer, F., Römer, U., Fidlin, A., Seemann, W.: Optimization of energy efficiency of walking bipedal robots by use of elastic couplings in the form of mechanical springs. Nonlinear Dyn. 83, 1275–1301 (2016). https://doi.org/10.1007/s11071-015-2402-9
Bauer, F., Fidlin, A., Seemann, W.: Energy efficient bipedal robots walking in resonance. Z. Für Angew. Math. Mech. 94, 968–973 (2014). https://doi.org/10.1002/zamm.201300245
Faux, D., Thomas, O., Grondel, S., Cattan, É.: Dynamic simulation and optimization of artificial insect-sized flapping wings for a bioinspired kinematics using a two resonant vibration modes combination. J. Sound Vib. 460, 114883 (2019). https://doi.org/10.1016/j.jsv.2019.114883
Faux, D., Thomas, O., Cattan, E., Grondel, S.: Two modes resonant combined motion for insect wings kinematics reproduction and lift generation. EPL Europhys. Lett. 121, 66001 (2018). https://doi.org/10.1209/0295-5075/121/66001
Miles, J.: Resonance and symmetry breaking for a duffing oscillator. SIAM J. Appl. Math. 49, 968–981 (1989). https://doi.org/10.1137/0149058
Liu, Y., Guo, F., He, X., Hui, Q.: Boundary control for an axially moving system with input restriction based on disturbance observers. IEEE Trans. Syst. Man Cybern. Syst. 49, 2242–2253 (2019). https://doi.org/10.1109/TSMC.2018.2843523
Liu, Y., Chen, X., Wu, Y., Cai, H., Yokoi, H.: Adaptive neural network control of a flexible spacecraft subject to input nonlinearity and asymmetric output constraint. IEEE Trans. Neural Netw. Learn. Syst. (2021). https://doi.org/10.1109/TNNLS.2021.3072907
Liu, Y., Mei, Y., Cai, H., He, C., Liu, T., Hu, G.: Asymmetric input–output constraint control of a flexible variable-length rotary crane arm. IEEE Trans. Cybern. (2021). https://doi.org/10.1109/TCYB.2021.3055151
Liu, Y., Chen, X., Mei, Y., Wu, Y.: Observer-based boundary control for an asymmetric output-constrained flexible robotic manipulator. Sci. China Inf. Sci. 65, 139203 (2022). https://doi.org/10.1007/s11432-019-2893-y
Kwak, M.K.: Dynamic Modeling and Active Vibration Control of Structures. Springer, Dordrecht (2022)
Min, C., Dahlmann, M., Sattel, T.: A concept for semi-active vibration control with a serial-stiffness-switch system. J. Sound Vib. 405, 234–250 (2017). https://doi.org/10.1016/j.jsv.2017.06.007
Min, C., Dahlmann, M., Sattel, T.: Steady state response analysis for a switched stiffness vibration control system based on vibration energy conversion. Nonlinear Dyn. 103, 239–254 (2021). https://doi.org/10.1007/s11071-020-06147-8
Jalili, N.: A comparative study and analysis of semi-active vibration-control systems. J. Vib. Acoust. 124, 593–605 (2002). https://doi.org/10.1115/1.1500336
Combes, S.A., Gagliardi, S.F., Switzer, C.M., Dillon, M.E.: Kinematic flexibility allows bumblebees to increase energetic efficiency when carrying heavy loads. Sci. Adv. 6, eaay3115 (2020). https://doi.org/10.1126/sciadv.aay3115
Lehmann, F.O., Dickinson, M.H.: The changes in power requirements and muscle efficiency during elevated force production in the fruit fly Drosophila melanogaster. J. Exp. Biol. 200, 1133 (1997). https://doi.org/10.1242/jeb.200.7.1133
Vance, J.T., Altshuler, D.L., Dickson, W.B., Dickinson, M.H., Roberts, S.P.: Hovering flight in the honeybee Apis mellifera: kinematic mechanisms for varying aerodynamic forces. Physiol. Biochem. Zool. 87, 870–881 (2014). https://doi.org/10.1086/678955
Unwin, D.M., Corbet, S.A.: Wingbeat frequency, temperature and body size in bees and flies. Physiol. Entomol. 9, 115–121 (1984). https://doi.org/10.1111/j.1365-3032.1984.tb00687.x
Dickinson, M.: Lighton: muscle efficiency and elastic storage in the flight motor of Drosophila. Science 268, 87–90 (1995). https://doi.org/10.1126/science.7701346
Whitehead, S.C., Beatus, T., Canale, L., Cohen, I.: Pitch perfect: how fruit flies control their body pitch angle. J. Exp. Biol. 218, 3508–3519 (2015). https://doi.org/10.1242/jeb.122622
Ristroph, L., Ristroph, G., Morozova, S., Bergou, A.J., Chang, S., Guckenheimer, J., Wang, Z.J., Cohen, I.: Active and passive stabilization of body pitch in insect flight. J. R. Soc. Interface 10, 20130237 (2013). https://doi.org/10.1098/rsif.2013.0237
Muijres, F.T., Elzinga, M.J., Melis, J.M., Dickinson, M.H.: Flies evade looming targets by executing rapid visually directed banked turns. Science 344, 172–177 (2014). https://doi.org/10.1126/science.1248955
Greenewalt, C.H.: The wings of insects and birds as mechanical oscillators. Proc. Am. Philos. Soc. 104, 605–611 (1960)
Harne, R.L., Wang, K.W.: Dipteran wing motor-inspired flapping flight versatility and effectiveness enhancement. J. R. Soc. Interface 12, 20141367 (2015). https://doi.org/10.1098/rsif.2014.1367
Nachtigall, W., Roth, W.: Correlations between stationary measurable parameters of wing movement and aerodynamic force production in the blowfly (Calliphora vicina R.-D.). J. Comp. Physiol. A 150, 251–260 (1983). https://doi.org/10.1007/BF00606375
Miyan, J.A., Ewing, A.W.: How Diptera move their wings: a re-examination of the wing base articulation and muscle systems concerned with flight. Philos. Trans. R. Soc. Lond. B Biol. Sci. 311, 271–302 (1985). https://doi.org/10.1098/rstb.1985.0154
Dickinson, M.H., Tu, M.S.: The function of dipteran flight muscle. Comp. Biochem. Physiol. A Physiol. 116, 223–238 (1997). https://doi.org/10.1016/S0300-9629(96)00162-4
Somers, J., Georgiades, M., Su, M.P., Bagi, J., Andrés, M., Alampounti, A., Mills, G., Ntabaliba, W., Moore, S.J., Spaccapelo, R., Albert, J.T.: Hitting the right note at the right time: circadian control of audibility in Anopheles mosquito mating swarms is mediated by flight tones. Sci. Adv. 8, eabl4844 (2022). https://doi.org/10.1126/sciadv.abl4844
Verstraten, T., Beckerle, P., Furnémont, R., Mathijssen, G., Vanderborght, B., Lefeber, D.: Series and parallel elastic actuation: impact of natural dynamics on power and energy consumption. Mech. Mach. Theory 102, 232–246 (2016). https://doi.org/10.1016/j.mechmachtheory.2016.04.004
Wang, S., van Dijk, W., van der Kooij, H.: Spring uses in exoskeleton actuation design. In: Proceedings of the 2011 IEEE International Conference on Rehabilitation Robotics, pp. 1–6. IEEE, Zurich (2011)
Gau, J., Wold, E.S., Lynch, J., Gravish, N., Sponberg, S.: The hawkmoth wingbeat is not at resonance. Biol. Lett. 18, 20220063 (2022). https://doi.org/10.1098/rsbl.2022.0063
Zhu, H.J., Sun, M.: Kinematics measurement and power requirements of fruitflies at various flight speeds. Energies 13, 4271 (2020). https://doi.org/10.3390/en13164271
Dickinson, M.H., Lehmann, F.-O., Sane, S.P.: Wing rotation and the aerodynamic basis of insect flight. Science 284, 1954 (1999). https://doi.org/10.1126/science.284.5422.1954
Robertson, B.D., Sawicki, G.S.: Unconstrained muscle-tendon workloops indicate resonance tuning as a mechanism for elastic limb behavior during terrestrial locomotion. Proc. Natl. Acad. Sci. 112, E5891–E5898 (2015). https://doi.org/10.1073/pnas.1500702112
Josephson, R.K., Malamud, J.G., Stokes, D.R.: Power output by an asynchronous flight muscle from a beetle. J. Exp. Biol. 203, 2667 (2000). https://doi.org/10.1242/jeb.203.17.2667
Sun, M., Tang, J.: Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion. J. Exp. Biol. 205, 55–70 (2002). https://doi.org/10.1242/jeb.205.1.55
Stramigioli, S., van Oort, G., Dertien, E.: A concept for a new energy efficient actuator. In: Proceedings of the 2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 671–675. IEEE, Xian (2008)
Berret, B., Darlot, C., Jean, F., Pozzo, T., Papaxanthis, C., Gauthier, J.P.: The inactivation principle: mathematical solutions minimizing the absolute work and biological implications for the planning of arm movements. PLOS Comput. Biol. 4, e1000194 (2008). https://doi.org/10.1371/journal.pcbi.1000194
Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics: A Foundation for Computer Science. Addison-Wesley, Reading (1994)
Verstraten, T., Mathijssen, G., Furnémont, R., Vanderborght, B., Lefeber, D.: Modeling and design of geared DC motors for energy efficiency: comparison between theory and experiments. Mechatronics 30, 198–213 (2015). https://doi.org/10.1016/j.mechatronics.2015.07.004
Kelly, M.: An introduction to trajectory optimization: how to do your own direct collocation. SIAM Rev. 59, 849–904 (2017). https://doi.org/10.1137/16M1062569
Vanderborght, B., Van Ham, R., Lefeber, D., Sugar, T.G., Hollander, K.W.: Comparison of mechanical design and energy consumption of adaptable, passive-compliant actuators. Int. J. Robot. Res. 28, 90–103 (2009). https://doi.org/10.1177/0278364908095333
Moon, J.-S., Bae, J.: Gait optimization and energetics of ballistic walking for an underactuated biped with knees. Nonlinear Dyn. 85, 1533–1546 (2016). https://doi.org/10.1007/s11071-016-2777-2
Haberland, M., Kim, S.: On extracting design principles from biology: II. Case study—the effect of knee direction on bipedal robot running efficiency. Bioinspir. Biomim. 10, 016011 (2015). https://doi.org/10.1088/1748-3190/10/1/016011
Berret, B., Chiovetto, E., Nori, F., Pozzo, T.: Evidence for composite cost functions in arm movement planning: an inverse optimal control approach. PLOS Comput. Biol. 7, e1002183 (2011). https://doi.org/10.1371/journal.pcbi.1002183
Oguz, O.S., Zhou, Z., Wollherr, D.: A hybrid framework for understanding and predicting human reaching motions. Front. Robot. AI. 5, 27 (2018). https://doi.org/10.3389/frobt.2018.00027
Reid, H.E., Schwab, R.K., Maxcer, M., Peterson, R.K.D., Johnson, E.L., Jankauski, M.: Wing flexibility reduces the energetic requirements of insect flight. Bioinspir. Biomim. 14, 056007 (2019). https://doi.org/10.1088/1748-3190/ab2dbc
Margaria, R.: Biomechanics and Energetics of Muscular Exercise. Clarendon, Oxford (1979)
Ruina, A., Bertram, J.E.A., Srinivasan, M.: A collisional model of the energetic cost of support work qualitatively explains leg sequencing in walking and galloping, pseudo-elastic leg behavior in running and the walk-to-run transition. J. Theor. Biol. 237, 170–192 (2005). https://doi.org/10.1016/j.jtbi.2005.04.004
Alexander, R.M.: A model of bipedal locomotion on compliant legs. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 338, 189–198 (1992). https://doi.org/10.1098/rstb.1992.0138
Jordan, H.E.: Energy-Efficient Electric Motors and their Applications. Springer, Dordrecht (1994)
Okyay, A., Khamesee, M.B., Erkorkmaz, K.: Design and optimization of a voice coil actuator for precision motion applications. IEEE Trans. Magn. 51, 1–10 (2015). https://doi.org/10.1109/TMAG.2014.2381160
Kumar, M., Walkama, D.M., Guasto, J.S., Ardekani, A.M.: Flow-induced buckling dynamics of sperm flagella. Phys. Rev. E 100, 063107 (2019). https://doi.org/10.1103/PhysRevE.100.063107
Beatus, T., Guckenheimer, J., Cohen, I.: Controlling roll perturbations in fruit flies. J. R. Soc. Interface (2015). https://doi.org/10.1098/rsif.2015.0075
Kato, N., Ayers, J., Morikawa, H. (eds.): Bio-mechanisms of Swimming and Flying. Springer, New York (2004)
Cator, L.J., Arthur, B.J., Harrington, L.C., Hoy, R.R.: Harmonic convergence in the love songs of the dengue vector mosquito. Science 323, 1077–1079 (2009). https://doi.org/10.1126/science.1166541
Spangler, H.G., Buchmann, S.L.: Effects of temperature on wingbeat frequency in the solitary bee Centris caesalpiniae (Anthophoridae: Hymenoptera). J. Kans. Entomol. Soc. 64, 107–109 (1991)
Ben-Dov, O., Beatus, T.: Pose estimation of free-flying fruit flies. In: Presented at the 25th International Conference on Pattern Recognition, Milan, Italy (2021)
De Silva, C.W.: Vibration and Shock Handbook. CRC Press, Boca Raton (2005)
Cai, L.-W.: Fundamentals of Mechanical Vibrations. ASME/Wiley, Hoboken (2016)
Sun, M.: Insect flight dynamics: stability and control. Rev. Mod. Phys. 86, 615–646 (2014). https://doi.org/10.1103/RevModPhys.86.615
Ma, K.Y., Chirarattananon, P., Fuller, S.B., Wood, R.J.: Controlled flight of a biologically inspired, insect-scale robot. Science 340, 603–607 (2013). https://doi.org/10.1126/science.1231806
Huang, S., Wensman, J.P., Ferris, D.P.: Locomotor adaptation by transtibial amputees walking with an experimental powered prosthesis under continuous myoelectric control. IEEE Trans. Neural Syst. Rehabil. Eng. 24, 573–581 (2016). https://doi.org/10.1109/TNSRE.2015.2441061
Edwards, C., Spurgeon, S.K.: Sliding Mode Control. CRC Press, Boca Raton (1998)
Kwatny, H.G., Blankenship, G.: Nonlinear Control and Analytical Mechanics. Birkhauser, Boston (2000)
Popovic, M.B.: Biomechatronics. Academic Press, Cambridge (2019)
Acknowledgements
This work was supported by the Israel Science Foundation Grant No. 1851/17 and by the Israel Ministry of Science and Technology Grant No. 3-17400.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendices
Appendix
A.1 Closed-form expressions for PEA and SEA work loops
In Sect. 2.1, we defined general work-loop profiles: \({G}^{\pm }\left(x\right)\) and \({F}^{\pm }\left(x\right)\) for PEA systems; and \({X}^{\pm }\left(F\right)\) and \({U}^{\pm }\left(F\right)\) for SEA systems. These constructs can be defined analytically for a range of different systems. For a linear PEA system, with \(D\left(\dot{x},\ddot{x}\right)=m\ddot{x}+c\dot{x}\), \({F}_{s}\left(x\right)=kx\), and undergoing simple-harmonic oscillation according to \(x\left(t\right)=\widehat{x}\mathrm{cos}\left(\omega t\right)\), we have [25]:
And for a quadratically damped PEA system, with \(D\left(\dot{x},\ddot{x}\right)=m\ddot{x}+\mathrm{sgn}\left(\dot{x}\right)c{\dot{x}}^{2}\), undergoing the same simple-harmonic motion, we have [25]:
These functions are defined for \(x\in \left[-\widehat{x},\widehat{x}\right]\). For a linear SEA system, with \(D\left(\dot{x},\ddot{x}\right)=m\ddot{x}+c\dot{x}\), \({F}_{s}\left(x\right)=kx\), and undergoing simple-harmonic oscillation according to \(x\left(t\right)=\widehat{x}\mathrm{cos}\left(\omega t\right)\), the construction is more complex. For \({X}^{\pm }\left(F\right)\) and \({U}^{\pm }\left(F\right)\) we have:
where these functions are defined over the force range \(F\in \left[-\widehat{F},\widehat{F}\right]\), with \(\widehat{F}=\omega \widehat{x}\sqrt{{m}^{2}{\omega }^{2}+{c}^{2}}.\)
To compute the elastic-bound conditions, Eq. 6, one further profile is required: the derivatives \({{X}^{^{\prime}}}^{\pm }\left(F\right)\). These derivatives are given by:
This completes the definition of work-loop profiles for these example systems.
A.2 Generalised triangle-wave function
To analyse frequency-band resonance in Sect. 4.1, we utilised a generalised triangle-like wave, allowing waveform alteration with associated frequency and offset modulation. This waveform was described via a freeplay-nonlinear time-invariant ODE. The time-domain solution to this ODE is:
with \(\dot{x}\left(t\right)\) and \(x\left(t\right)\) as:
The parameter \(\delta \) is a time-domain analogue of \(R\), representing the time window over which the sinusoid velocity-reversal component acts, as per the piecewise component limits in Eq. A.2.1; and \(T\) is the waveform period, \(T=2\pi /\omega \). Analytical formulations of \(x\left(t\right)\), via Eq. A.2.2, are available, but these formulations are not required for frequency-band acceleration-matching, and so we use numerical integration for convenience.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Pons, A., Beatus, T. Band-type resonance: non-discrete energetically optimal resonant states. Nonlinear Dyn 111, 1161–1192 (2023). https://doi.org/10.1007/s11071-022-07888-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11071-022-07888-4