Skip to main content
Log in

Band-type resonance: non-discrete energetically optimal resonant states

Nonlinear Dynamics Aims and scope Submit manuscript

Cite this article

Abstract

Structural resonance involves the absorption of inertial loads by a tuned structural elasticity: a process playing a key role in a wide range of biological and technological systems, including many biological and bio-inspired locomotion systems. Conventional linear and nonlinear resonant states typically exist at specific discrete frequencies and specific symmetric waveforms. This discreteness can be an obstacle to resonant control modulation: deviating from these states, by modulating waveform asymmetry or drive frequency, generally leads to losses in system efficiency. Here, we demonstrate a new strategy for achieving these modulations at no loss of energetic efficiency. Leveraging fundamental advances in nonlinear dynamics, we characterise a new form of structural resonance: band-type resonance, describing a continuous band of energetically optimal resonant states existing around conventional discrete resonant states. These states are a counterexample to the common supposition that deviation from a linear (or nonlinear) resonant frequency necessarily involves a loss of efficiency. We demonstrate how band-type resonant states can be generated via a spectral shaping approach: with small modifications to the system kinematic and load waveforms, we construct sets of frequency- and asymmetry-modulated resonant states that show equal energetic optimality to their conventional discrete analogues. The existence of these non-discrete resonant states in a huge range of oscillators—linear and nonlinear, in many different physical contexts—is a new dynamical systems phenomenon. It has implications not only for biological and bio-inspired locomotion systems but for a constellation of forced oscillator systems across physics, engineering, and biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data availability

No datasets were generated or utilised in this study.

Notes

  1. Indeed, it appears the case that the value of \({\overline{P} }_{\left|F\right|}\) which is invariant over the elastic-bound region is necessarily the global minimum of \({\overline{P} }_{\left|F\right|}\) over all possible elasticities—though this point deserves further theoretical treatment.

  2. A technical point: in this PEA system, a triangle-type waveform defined by Eq. 12 allows only a reduction in frequency relative to the initial simple-harmonic waveform. Obtaining an increase in frequency is relatively simple. We can (i) define the initial state as multiharmonic (\(R\ne 0\)) instead of single-harmonic (\(R=0\)), or (ii) choose an alternative generative ODE, \(\ddot{x}=h\left(x\right)\): e.g., \(h\left(x\right)\propto -\mathrm{sgn}x{\left|x\right|}^{n}\), \(0<n\le 1\), which generates increases in frequency over a sine wave (\(n=\) 1). There is scope for a theoretical treatment of the relationship between \(h\left(x\right)\) and the frequency-band resonant states it generates—we leave such a treatment to future work.

References

  1. Killingbeck, J.P.: Mathematical Techniques and Physical Applications. Elsevier, Saint Louis (2014)

    Google Scholar 

  2. Goldstein, H., Poole, C.P., Safko, J.L.: Classical Mechanics. Addison Wesley, Munich (2008)

    MATH  Google Scholar 

  3. Thomsen, J.J.: Vibrations and Stability: Advanced Theory, Analysis, and Tools. Springer, Berlin (2021)

    Book  MATH  Google Scholar 

  4. Ibrahim, R.A.: Oscillons, walking droplets, and skipping stones (an overview). Nonlinear Dyn. 104, 1829–1888 (2021). https://doi.org/10.1007/s11071-021-06442-y

    Article  Google Scholar 

  5. Solomon, T.H., Mezić, I.: Uniform resonant chaotic mixing in fluid flows. Nature 425, 376–380 (2003). https://doi.org/10.1038/nature01993

    Article  Google Scholar 

  6. Inagaki, M., Murata, O., Kondoh, T., Abe, K.: Numerical prediction of fluid-resonant oscillation at low Mach number. AIAA J. 40, 1823–1829 (2002). https://doi.org/10.2514/2.1859

    Article  Google Scholar 

  7. Akram, M.J., Saif, F.: Complex dynamics of nano-mechanical membrane in cavity optomechanics. Nonlinear Dyn. 83, 963–970 (2016). https://doi.org/10.1007/s11071-015-2380-y

    Article  Google Scholar 

  8. Chen, W., Roelli, P., Hu, H., Verlekar, S., Amirtharaj, S.P., Barreda, A.I., Kippenberg, T.J., Kovylina, M., Verhagen, E., Martínez, A., Galland, C.: Continuous-wave frequency upconversion with a molecular optomechanical nanocavity. Science 374, 1264–1267 (2021). https://doi.org/10.1126/science.abk3106

    Article  Google Scholar 

  9. Wang, F., Dukovic, G., Brus, L.E., Heinz, T.F.: The optical resonances in carbon nanotubes arise from excitons. Science 308, 838–841 (2005). https://doi.org/10.1126/science.1110265

    Article  Google Scholar 

  10. Bird, J.O.: Electrical Circuit Theory and Technology. Newnes, Oxford (2007)

    Book  Google Scholar 

  11. Jothimurugan, R., Thamilmaran, K., Rajasekar, S., Sanjuán, M.A.F.: Multiple resonance and anti-resonance in coupled Duffing oscillators. Nonlinear Dyn. 83, 1803–1814 (2016). https://doi.org/10.1007/s11071-015-2447-9

    Article  MathSciNet  Google Scholar 

  12. Zhang, B., Shu, X.: Fractional-Order Electrical Circuit Theory. Springer, Cham (2022)

    Book  Google Scholar 

  13. Karev, A., Hagedorn, P.: Asynchronous parametric excitation: validation of theoretical results by electronic circuit simulation. Nonlinear Dyn. 102, 555–565 (2020). https://doi.org/10.1007/s11071-020-05870-6

    Article  Google Scholar 

  14. Shuvaev, A., Muravev, V.M., Gusikhin, P.A., Gospodarič, J., Pimenov, A., Kukushkin, I.V.: Discovery of two-dimensional electromagnetic plasma waves. Phys. Rev. Lett. 126, 136801 (2021). https://doi.org/10.1103/PhysRevLett.126.136801

    Article  Google Scholar 

  15. Qi, Z., Chen, Q., Wang, M., Li, B.: New mixed solutions generated by velocity resonance in the (2+1)-dimensional Sawada–Kotera equation. Nonlinear Dyn. 108, 1617–1626 (2022). https://doi.org/10.1007/s11071-022-07248-2

    Article  Google Scholar 

  16. Rajasekar, S., Sanjuan, M.A.F.: Nonlinear Resonances. Springer, Cham (2016)

    Book  Google Scholar 

  17. Kartashova, E.: Nonlinear Resonance Analysis: Theory, Computation, Applications. Cambridge University Press, Cambridge (2011)

    MATH  Google Scholar 

  18. Awrejcewicz, J. (ed.): Resonance. InTech, London (2017)

    Google Scholar 

  19. Gammaitoni, L., Hänggi, P., Jung, P., Marchesoni, F.: Stochastic resonance. Rev. Mod. Phys. 70, 223–287 (1998). https://doi.org/10.1103/RevModPhys.70.223

    Article  Google Scholar 

  20. Pons, A., Beatus, T.: Distinct forms of resonant optimality within insect indirect flight motors. J. R. Soc. Interface (2022). https://doi.org/10.1098/rsif.2022.0080

    Article  Google Scholar 

  21. Ma, T., Zhang, H.: Reaping the potentials of nonlinear energy harvesting with tunable damping and modulation of the forcing functions. Appl. Phys. Lett. 104, 214104 (2014). https://doi.org/10.1063/1.4879846

    Article  Google Scholar 

  22. Zhang, H., Ma, T.: Roles of the excitation in harvesting energy from vibrations. PLoS ONE 10, e0141299 (2015). https://doi.org/10.1371/journal.pone.0141299

    Article  Google Scholar 

  23. Zhang, H., Ma, T., Xu, N.S.: New insights into vibration-based energy harvesting. In: Proceedings of the SPIE 9435, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, pp. 943504, SPIE, San Diego (2015)

  24. Zhang, H., Corr, L.R., Ma, T.: Issues in vibration energy harvesting. J. Sound Vib. 421, 79–90 (2018). https://doi.org/10.1016/j.jsv.2018.01.057

    Article  Google Scholar 

  25. Pons, A., Beatus, T.: Elastic-bound conditions for energetically optimal elasticity and their implications for biomimetic propulsion systems. Nonlinear Dyn. 108, 2045–2074 (2022). https://doi.org/10.1007/s11071-022-07325-6

    Article  Google Scholar 

  26. Vakakis, A.F., Gendelman, O.V., Bergman, L.A., Mojahed, A., Gzal, M.: Nonlinear targeted energy transfer: state of the art and new perspectives. Nonlinear Dyn. 108, 711–741 (2022). https://doi.org/10.1007/s11071-022-07216-w

    Article  Google Scholar 

  27. Brand, O., Dufour, I., Heinrich, S.M., Josse, F. (eds.): Resonant MEMS: Fundamentals, Implementation and Application. Wiley, Weinheim (2015)

    Google Scholar 

  28. Ilyas, S., Alfosail, F.K., Bellaredj, M.L.F., Younis, M.I.: On the response of MEMS resonators under generic electrostatic loadings: experiments and applications. Nonlinear Dyn. 95, 2263–2274 (2019). https://doi.org/10.1007/s11071-018-4690-3

    Article  Google Scholar 

  29. Indeitsev, D.A., Belyaev, Y.V., Lukin, A.V., Popov, I.A.: Nonlinear dynamics of MEMS resonator in PLL-AGC self-oscillation loop. Nonlinear Dyn. 104, 3187–3204 (2021). https://doi.org/10.1007/s11071-021-06586-x

    Article  Google Scholar 

  30. Ruzziconi, L., Jaber, N., Kosuru, L., Bellaredj, M.L., Younis, M.I.: Internal resonance in the higher-order modes of a MEMS beam: experiments and global analysis. Nonlinear Dyn. 103, 2197–2226 (2021). https://doi.org/10.1007/s11071-021-06273-x

    Article  Google Scholar 

  31. Guillon, S., Saya, D., Mazenq, L., Perisanu, S., Vincent, P., Lazarus, A., Thomas, O., Nicu, L.: Effect of non-ideal clamping shape on the resonance frequencies of silicon nanocantilevers. Nanotechnology 22, 245501 (2011). https://doi.org/10.1088/0957-4484/22/24/245501

    Article  Google Scholar 

  32. Gutschmidt, S., Gottlieb, O.: Nonlinear dynamic behavior of a microbeam array subject to parametric actuation at low, medium and large DC-voltages. Nonlinear Dyn. 67, 1–36 (2012). https://doi.org/10.1007/s11071-010-9888-y

    Article  MATH  Google Scholar 

  33. Hornstein, S., Gottlieb, O.: Nonlinear dynamics, stability and control of the scan process in noncontacting atomic force microscopy. Nonlinear Dyn. 54, 93–122 (2008). https://doi.org/10.1007/s11071-008-9335-5

    Article  MathSciNet  MATH  Google Scholar 

  34. Chandrashekar, A., Belardinelli, P., Staufer, U., Alijani, F.: Robustness of attractors in tapping mode atomic force microscopy. Nonlinear Dyn. 97, 1137–1158 (2019). https://doi.org/10.1007/s11071-019-05037-y

    Article  Google Scholar 

  35. Rega, G., Settimi, V.: Bifurcation, response scenarios and dynamic integrity in a single-mode model of noncontact atomic force microscopy. Nonlinear Dyn. 73, 101–123 (2013). https://doi.org/10.1007/s11071-013-0771-5

    Article  MathSciNet  Google Scholar 

  36. Berardengo, M., Manzoni, S., Thomas, O., Vanali, M.: Piezoelectric resonant shunt enhancement by negative capacitances: optimisation, performance and resonance cancellation. J. Intell. Mater. Syst. Struct. 29, 2581–2606 (2018). https://doi.org/10.1177/1045389X18770874

    Article  Google Scholar 

  37. Shami, Z.A., Giraud-Audine, C., Thomas, O.: A nonlinear piezoelectric shunt absorber with 2:1 internal resonance: experimental proof of concept. Smart Mater. Struct. 31, 035006 (2022). https://doi.org/10.1088/1361-665X/ac4ab5

    Article  Google Scholar 

  38. Shami, Z.A., Giraud-Audine, C., Thomas, O.: A nonlinear piezoelectric shunt absorber with a 2:1 internal resonance: theory. Mech. Syst. Signal Process. 170, 108768 (2022). https://doi.org/10.1016/j.ymssp.2021.108768

    Article  Google Scholar 

  39. Xia, Y., Ruzzene, M., Erturk, A.: Bistable attachments for wideband nonlinear vibration attenuation in a metamaterial beam. Nonlinear Dyn. 102, 1285–1296 (2020). https://doi.org/10.1007/s11071-020-06008-4

    Article  Google Scholar 

  40. Cveticanin, L., Zukovic, M., Cveticanin, D.: Influence of nonlinear subunits on the resonance frequency band gaps of acoustic metamaterial. Nonlinear Dyn. 93, 1341–1351 (2018). https://doi.org/10.1007/s11071-018-4263-5

    Article  Google Scholar 

  41. Hrncir, M., Gravel, A.-I., Schorkopf, D.L.P., Schmidt, V.M., Zucchi, R., Barth, F.G.: Thoracic vibrations in stingless bees (Melipona seminigra): resonances of the thorax influence vibrations associated with flight but not those associated with sound production. J. Exp. Biol. 211, 678–685 (2008). https://doi.org/10.1242/jeb.013920

    Article  Google Scholar 

  42. Jankauski, M.A.: Measuring the frequency response of the honeybee thorax. Bioinspir. Biomim. 15, 046002 (2020). https://doi.org/10.1088/1748-3190/ab835b

    Article  Google Scholar 

  43. Gau, J., Gravish, N., Sponberg, S.: Indirect actuation reduces flight power requirements in Manduca sexta via elastic energy exchange. J. R. Soc. Interface 16, 20190543 (2019). https://doi.org/10.1098/rsif.2019.0543

    Article  Google Scholar 

  44. Gau, J., Gemilere, R., Lynch, J., Gravish, N., Sponberg, S.: Rapid frequency modulation in a resonant system: aerial perturbation recovery in hawkmoths. Proc. R. Soc. B Biol. Sci. 288, 20210352 (2021). https://doi.org/10.1098/rspb.2021.0352

    Article  Google Scholar 

  45. Lynch, J., Gau, J., Sponberg, S., Gravish, N.: Dimensional analysis of spring-wing systems reveals performance metrics for resonant flapping-wing flight. J. R. Soc. Interface 18, 20200888 (2021). https://doi.org/10.1098/rsif.2020.0888

    Article  Google Scholar 

  46. Lehmann, F.O., Dickinson, M.H.: The control of wing kinematics and flight forces in fruit flies (Drosophila spp.). J. Exp. Biol. 201, 385 (1998). https://doi.org/10.1242/jeb.201.3.385

    Article  Google Scholar 

  47. Deora, T., Singh, A.K., Sane, S.P.: Biomechanical basis of wing and haltere coordination in flies. Proc. Natl. Acad. Sci. 112, 1481–1486 (2015). https://doi.org/10.1073/pnas.1412279112

    Article  Google Scholar 

  48. Hoover, A., Miller, L.: A numerical study of the benefits of driving jellyfish bells at their natural frequency. J. Theor. Biol. 374, 13–25 (2015). https://doi.org/10.1016/j.jtbi.2015.03.016

    Article  MathSciNet  MATH  Google Scholar 

  49. Hoover, A.P., Porras, A.J., Miller, L.A.: Pump or coast: the role of resonance and passive energy recapture in medusan swimming performance. J. Fluid Mech. 863, 1031–1061 (2019). https://doi.org/10.1017/jfm.2018.1007

    Article  MathSciNet  MATH  Google Scholar 

  50. Hoover, A.P., Xu, N.W., Gemmell, B.J., Colin, S.P., Costello, J.H., Dabiri, J.O., Miller, L.A.: Neuromechanical wave resonance in jellyfish swimming. Proc. Natl. Acad. Sci. 118, e2020025118 (2021). https://doi.org/10.1073/pnas.2020025118

    Article  Google Scholar 

  51. Bhalla, A.P.S., Griffith, B.E., Patankar, N.A.: A forced damped oscillation framework for undulatory swimming provides new insights into how propulsion arises in active and passive swimming. PLOS Comput. Biol. 9, e1003097 (2013). https://doi.org/10.1371/journal.pcbi.1003097

    Article  MathSciNet  Google Scholar 

  52. Kohannim, S., Iwasaki, T.: Analytical insights into optimality and resonance in fish swimming. J. R. Soc. Interface 11, 20131073 (2014). https://doi.org/10.1098/rsif.2013.1073

    Article  Google Scholar 

  53. Tytell, E.D., Hsu, C.-Y., Fauci, L.J.: The role of mechanical resonance in the neural control of swimming in fishes. Zoology 117, 48–56 (2014). https://doi.org/10.1016/j.zool.2013.10.011

    Article  Google Scholar 

  54. Ahlborn, B.K., Blake, R.W.: Walking and running at resonance. Zoology 105, 165–174 (2002). https://doi.org/10.1078/0944-2006-00057

    Article  Google Scholar 

  55. Bujard, T., Giorgio-Serchi, F., Weymouth, G.D.: A resonant squid-inspired robot unlocks biological propulsive efficiency. Sci. Robot. 6, eabd2971 (2021). https://doi.org/10.1126/scirobotics.abd2971

    Article  Google Scholar 

  56. Zhang, C., Rossi, C.: A review of compliant transmission mechanisms for bio-inspired flapping-wing micro air vehicles. Bioinspir. Biomim. 12, 025005 (2017). https://doi.org/10.1088/1748-3190/aa58d3

    Article  Google Scholar 

  57. Kaynak, M., Ozcelik, A., Nourhani, A., Lammert, P.E., Crespi, V.H., Huang, T.J.: Acoustic actuation of bioinspired microswimmers. Lab Chip 17, 395–400 (2017). https://doi.org/10.1039/C6LC01272H

    Article  Google Scholar 

  58. Liu, J., Ruan, H.: Modeling of an acoustically actuated artificial micro-swimmer. Bioinspir. Biomim. 15, 036002 (2020). https://doi.org/10.1088/1748-3190/ab6a61

    Article  Google Scholar 

  59. Ramananarivo, S., Godoy-Diana, R., Thiria, B.: Passive elastic mechanism to mimic fish-muscle action in anguilliform swimming. J. R. Soc. Interface 10, 20130667 (2013). https://doi.org/10.1098/rsif.2013.0667

    Article  Google Scholar 

  60. Collins, S., Ruina, A., Tedrake, R., Wisse, M.: Efficient bipedal robots based on passive-dynamic walkers. Science 307, 1082–1085 (2005). https://doi.org/10.1126/science.1107799

    Article  Google Scholar 

  61. Haldane, D.W., Plecnik, M.M., Yim, J.K., Fearing, R.S.: Robotic vertical jumping agility via series-elastic power modulation. Sci. Robot. 1, eaag2048 (2016). https://doi.org/10.1126/scirobotics.aag2048

    Article  Google Scholar 

  62. Bolivar Nieto, E.A., Rezazadeh, S., Gregg, R.D.: minimizing energy consumption and peak power of series elastic actuators: a convex optimization framework for elastic element design. IEEE ASME Trans. Mechatron. 24, 1334–1345 (2019). https://doi.org/10.1109/TMECH.2019.2906887

    Article  Google Scholar 

  63. Taha, H.E., Nayfeh, A.H., Hajj, M.R.: Saturation-based actuation for flapping MAVs in hovering and forward flight. Nonlinear Dyn. 73, 1125–1138 (2013). https://doi.org/10.1007/s11071-013-0857-0

    Article  MathSciNet  Google Scholar 

  64. Bauer, F., Römer, U., Fidlin, A., Seemann, W.: Optimization of energy efficiency of walking bipedal robots by use of elastic couplings in the form of mechanical springs. Nonlinear Dyn. 83, 1275–1301 (2016). https://doi.org/10.1007/s11071-015-2402-9

    Article  MathSciNet  MATH  Google Scholar 

  65. Bauer, F., Fidlin, A., Seemann, W.: Energy efficient bipedal robots walking in resonance. Z. Für Angew. Math. Mech. 94, 968–973 (2014). https://doi.org/10.1002/zamm.201300245

    Article  MathSciNet  Google Scholar 

  66. Faux, D., Thomas, O., Grondel, S., Cattan, É.: Dynamic simulation and optimization of artificial insect-sized flapping wings for a bioinspired kinematics using a two resonant vibration modes combination. J. Sound Vib. 460, 114883 (2019). https://doi.org/10.1016/j.jsv.2019.114883

    Article  Google Scholar 

  67. Faux, D., Thomas, O., Cattan, E., Grondel, S.: Two modes resonant combined motion for insect wings kinematics reproduction and lift generation. EPL Europhys. Lett. 121, 66001 (2018). https://doi.org/10.1209/0295-5075/121/66001

    Article  Google Scholar 

  68. Miles, J.: Resonance and symmetry breaking for a duffing oscillator. SIAM J. Appl. Math. 49, 968–981 (1989). https://doi.org/10.1137/0149058

    Article  MathSciNet  MATH  Google Scholar 

  69. Liu, Y., Guo, F., He, X., Hui, Q.: Boundary control for an axially moving system with input restriction based on disturbance observers. IEEE Trans. Syst. Man Cybern. Syst. 49, 2242–2253 (2019). https://doi.org/10.1109/TSMC.2018.2843523

    Article  Google Scholar 

  70. Liu, Y., Chen, X., Wu, Y., Cai, H., Yokoi, H.: Adaptive neural network control of a flexible spacecraft subject to input nonlinearity and asymmetric output constraint. IEEE Trans. Neural Netw. Learn. Syst. (2021). https://doi.org/10.1109/TNNLS.2021.3072907

    Article  Google Scholar 

  71. Liu, Y., Mei, Y., Cai, H., He, C., Liu, T., Hu, G.: Asymmetric input–output constraint control of a flexible variable-length rotary crane arm. IEEE Trans. Cybern. (2021). https://doi.org/10.1109/TCYB.2021.3055151

    Article  Google Scholar 

  72. Liu, Y., Chen, X., Mei, Y., Wu, Y.: Observer-based boundary control for an asymmetric output-constrained flexible robotic manipulator. Sci. China Inf. Sci. 65, 139203 (2022). https://doi.org/10.1007/s11432-019-2893-y

    Article  MathSciNet  Google Scholar 

  73. Kwak, M.K.: Dynamic Modeling and Active Vibration Control of Structures. Springer, Dordrecht (2022)

    Book  Google Scholar 

  74. Min, C., Dahlmann, M., Sattel, T.: A concept for semi-active vibration control with a serial-stiffness-switch system. J. Sound Vib. 405, 234–250 (2017). https://doi.org/10.1016/j.jsv.2017.06.007

    Article  Google Scholar 

  75. Min, C., Dahlmann, M., Sattel, T.: Steady state response analysis for a switched stiffness vibration control system based on vibration energy conversion. Nonlinear Dyn. 103, 239–254 (2021). https://doi.org/10.1007/s11071-020-06147-8

    Article  Google Scholar 

  76. Jalili, N.: A comparative study and analysis of semi-active vibration-control systems. J. Vib. Acoust. 124, 593–605 (2002). https://doi.org/10.1115/1.1500336

    Article  Google Scholar 

  77. Combes, S.A., Gagliardi, S.F., Switzer, C.M., Dillon, M.E.: Kinematic flexibility allows bumblebees to increase energetic efficiency when carrying heavy loads. Sci. Adv. 6, eaay3115 (2020). https://doi.org/10.1126/sciadv.aay3115

    Article  Google Scholar 

  78. Lehmann, F.O., Dickinson, M.H.: The changes in power requirements and muscle efficiency during elevated force production in the fruit fly Drosophila melanogaster. J. Exp. Biol. 200, 1133 (1997). https://doi.org/10.1242/jeb.200.7.1133

    Article  Google Scholar 

  79. Vance, J.T., Altshuler, D.L., Dickson, W.B., Dickinson, M.H., Roberts, S.P.: Hovering flight in the honeybee Apis mellifera: kinematic mechanisms for varying aerodynamic forces. Physiol. Biochem. Zool. 87, 870–881 (2014). https://doi.org/10.1086/678955

    Article  Google Scholar 

  80. Unwin, D.M., Corbet, S.A.: Wingbeat frequency, temperature and body size in bees and flies. Physiol. Entomol. 9, 115–121 (1984). https://doi.org/10.1111/j.1365-3032.1984.tb00687.x

    Article  Google Scholar 

  81. Dickinson, M.: Lighton: muscle efficiency and elastic storage in the flight motor of Drosophila. Science 268, 87–90 (1995). https://doi.org/10.1126/science.7701346

    Article  Google Scholar 

  82. Whitehead, S.C., Beatus, T., Canale, L., Cohen, I.: Pitch perfect: how fruit flies control their body pitch angle. J. Exp. Biol. 218, 3508–3519 (2015). https://doi.org/10.1242/jeb.122622

    Article  Google Scholar 

  83. Ristroph, L., Ristroph, G., Morozova, S., Bergou, A.J., Chang, S., Guckenheimer, J., Wang, Z.J., Cohen, I.: Active and passive stabilization of body pitch in insect flight. J. R. Soc. Interface 10, 20130237 (2013). https://doi.org/10.1098/rsif.2013.0237

    Article  Google Scholar 

  84. Muijres, F.T., Elzinga, M.J., Melis, J.M., Dickinson, M.H.: Flies evade looming targets by executing rapid visually directed banked turns. Science 344, 172–177 (2014). https://doi.org/10.1126/science.1248955

    Article  Google Scholar 

  85. Greenewalt, C.H.: The wings of insects and birds as mechanical oscillators. Proc. Am. Philos. Soc. 104, 605–611 (1960)

    Google Scholar 

  86. Harne, R.L., Wang, K.W.: Dipteran wing motor-inspired flapping flight versatility and effectiveness enhancement. J. R. Soc. Interface 12, 20141367 (2015). https://doi.org/10.1098/rsif.2014.1367

    Article  Google Scholar 

  87. Nachtigall, W., Roth, W.: Correlations between stationary measurable parameters of wing movement and aerodynamic force production in the blowfly (Calliphora vicina R.-D.). J. Comp. Physiol. A 150, 251–260 (1983). https://doi.org/10.1007/BF00606375

    Article  Google Scholar 

  88. Miyan, J.A., Ewing, A.W.: How Diptera move their wings: a re-examination of the wing base articulation and muscle systems concerned with flight. Philos. Trans. R. Soc. Lond. B Biol. Sci. 311, 271–302 (1985). https://doi.org/10.1098/rstb.1985.0154

    Article  Google Scholar 

  89. Dickinson, M.H., Tu, M.S.: The function of dipteran flight muscle. Comp. Biochem. Physiol. A Physiol. 116, 223–238 (1997). https://doi.org/10.1016/S0300-9629(96)00162-4

    Article  Google Scholar 

  90. Somers, J., Georgiades, M., Su, M.P., Bagi, J., Andrés, M., Alampounti, A., Mills, G., Ntabaliba, W., Moore, S.J., Spaccapelo, R., Albert, J.T.: Hitting the right note at the right time: circadian control of audibility in Anopheles mosquito mating swarms is mediated by flight tones. Sci. Adv. 8, eabl4844 (2022). https://doi.org/10.1126/sciadv.abl4844

    Article  Google Scholar 

  91. Verstraten, T., Beckerle, P., Furnémont, R., Mathijssen, G., Vanderborght, B., Lefeber, D.: Series and parallel elastic actuation: impact of natural dynamics on power and energy consumption. Mech. Mach. Theory 102, 232–246 (2016). https://doi.org/10.1016/j.mechmachtheory.2016.04.004

    Article  Google Scholar 

  92. Wang, S., van Dijk, W., van der Kooij, H.: Spring uses in exoskeleton actuation design. In: Proceedings of the 2011 IEEE International Conference on Rehabilitation Robotics, pp. 1–6. IEEE, Zurich (2011)

  93. Gau, J., Wold, E.S., Lynch, J., Gravish, N., Sponberg, S.: The hawkmoth wingbeat is not at resonance. Biol. Lett. 18, 20220063 (2022). https://doi.org/10.1098/rsbl.2022.0063

    Article  Google Scholar 

  94. Zhu, H.J., Sun, M.: Kinematics measurement and power requirements of fruitflies at various flight speeds. Energies 13, 4271 (2020). https://doi.org/10.3390/en13164271

    Article  Google Scholar 

  95. Dickinson, M.H., Lehmann, F.-O., Sane, S.P.: Wing rotation and the aerodynamic basis of insect flight. Science 284, 1954 (1999). https://doi.org/10.1126/science.284.5422.1954

    Article  Google Scholar 

  96. Robertson, B.D., Sawicki, G.S.: Unconstrained muscle-tendon workloops indicate resonance tuning as a mechanism for elastic limb behavior during terrestrial locomotion. Proc. Natl. Acad. Sci. 112, E5891–E5898 (2015). https://doi.org/10.1073/pnas.1500702112

    Article  Google Scholar 

  97. Josephson, R.K., Malamud, J.G., Stokes, D.R.: Power output by an asynchronous flight muscle from a beetle. J. Exp. Biol. 203, 2667 (2000). https://doi.org/10.1242/jeb.203.17.2667

    Article  Google Scholar 

  98. Sun, M., Tang, J.: Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion. J. Exp. Biol. 205, 55–70 (2002). https://doi.org/10.1242/jeb.205.1.55

    Article  Google Scholar 

  99. Stramigioli, S., van Oort, G., Dertien, E.: A concept for a new energy efficient actuator. In: Proceedings of the 2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 671–675. IEEE, Xian (2008)

  100. Berret, B., Darlot, C., Jean, F., Pozzo, T., Papaxanthis, C., Gauthier, J.P.: The inactivation principle: mathematical solutions minimizing the absolute work and biological implications for the planning of arm movements. PLOS Comput. Biol. 4, e1000194 (2008). https://doi.org/10.1371/journal.pcbi.1000194

    Article  MathSciNet  Google Scholar 

  101. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics: A Foundation for Computer Science. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

  102. Verstraten, T., Mathijssen, G., Furnémont, R., Vanderborght, B., Lefeber, D.: Modeling and design of geared DC motors for energy efficiency: comparison between theory and experiments. Mechatronics 30, 198–213 (2015). https://doi.org/10.1016/j.mechatronics.2015.07.004

    Article  Google Scholar 

  103. Kelly, M.: An introduction to trajectory optimization: how to do your own direct collocation. SIAM Rev. 59, 849–904 (2017). https://doi.org/10.1137/16M1062569

    Article  MathSciNet  MATH  Google Scholar 

  104. Vanderborght, B., Van Ham, R., Lefeber, D., Sugar, T.G., Hollander, K.W.: Comparison of mechanical design and energy consumption of adaptable, passive-compliant actuators. Int. J. Robot. Res. 28, 90–103 (2009). https://doi.org/10.1177/0278364908095333

    Article  Google Scholar 

  105. Moon, J.-S., Bae, J.: Gait optimization and energetics of ballistic walking for an underactuated biped with knees. Nonlinear Dyn. 85, 1533–1546 (2016). https://doi.org/10.1007/s11071-016-2777-2

    Article  Google Scholar 

  106. Haberland, M., Kim, S.: On extracting design principles from biology: II. Case study—the effect of knee direction on bipedal robot running efficiency. Bioinspir. Biomim. 10, 016011 (2015). https://doi.org/10.1088/1748-3190/10/1/016011

    Article  Google Scholar 

  107. Berret, B., Chiovetto, E., Nori, F., Pozzo, T.: Evidence for composite cost functions in arm movement planning: an inverse optimal control approach. PLOS Comput. Biol. 7, e1002183 (2011). https://doi.org/10.1371/journal.pcbi.1002183

    Article  MathSciNet  Google Scholar 

  108. Oguz, O.S., Zhou, Z., Wollherr, D.: A hybrid framework for understanding and predicting human reaching motions. Front. Robot. AI. 5, 27 (2018). https://doi.org/10.3389/frobt.2018.00027

    Article  Google Scholar 

  109. Reid, H.E., Schwab, R.K., Maxcer, M., Peterson, R.K.D., Johnson, E.L., Jankauski, M.: Wing flexibility reduces the energetic requirements of insect flight. Bioinspir. Biomim. 14, 056007 (2019). https://doi.org/10.1088/1748-3190/ab2dbc

    Article  Google Scholar 

  110. Margaria, R.: Biomechanics and Energetics of Muscular Exercise. Clarendon, Oxford (1979)

    Google Scholar 

  111. Ruina, A., Bertram, J.E.A., Srinivasan, M.: A collisional model of the energetic cost of support work qualitatively explains leg sequencing in walking and galloping, pseudo-elastic leg behavior in running and the walk-to-run transition. J. Theor. Biol. 237, 170–192 (2005). https://doi.org/10.1016/j.jtbi.2005.04.004

    Article  MathSciNet  MATH  Google Scholar 

  112. Alexander, R.M.: A model of bipedal locomotion on compliant legs. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 338, 189–198 (1992). https://doi.org/10.1098/rstb.1992.0138

    Article  Google Scholar 

  113. Jordan, H.E.: Energy-Efficient Electric Motors and their Applications. Springer, Dordrecht (1994)

    Book  Google Scholar 

  114. Okyay, A., Khamesee, M.B., Erkorkmaz, K.: Design and optimization of a voice coil actuator for precision motion applications. IEEE Trans. Magn. 51, 1–10 (2015). https://doi.org/10.1109/TMAG.2014.2381160

    Article  Google Scholar 

  115. Kumar, M., Walkama, D.M., Guasto, J.S., Ardekani, A.M.: Flow-induced buckling dynamics of sperm flagella. Phys. Rev. E 100, 063107 (2019). https://doi.org/10.1103/PhysRevE.100.063107

    Article  Google Scholar 

  116. Beatus, T., Guckenheimer, J., Cohen, I.: Controlling roll perturbations in fruit flies. J. R. Soc. Interface (2015). https://doi.org/10.1098/rsif.2015.0075

    Article  Google Scholar 

  117. Kato, N., Ayers, J., Morikawa, H. (eds.): Bio-mechanisms of Swimming and Flying. Springer, New York (2004)

    Google Scholar 

  118. Cator, L.J., Arthur, B.J., Harrington, L.C., Hoy, R.R.: Harmonic convergence in the love songs of the dengue vector mosquito. Science 323, 1077–1079 (2009). https://doi.org/10.1126/science.1166541

    Article  Google Scholar 

  119. Spangler, H.G., Buchmann, S.L.: Effects of temperature on wingbeat frequency in the solitary bee Centris caesalpiniae (Anthophoridae: Hymenoptera). J. Kans. Entomol. Soc. 64, 107–109 (1991)

    Google Scholar 

  120. Ben-Dov, O., Beatus, T.: Pose estimation of free-flying fruit flies. In: Presented at the 25th International Conference on Pattern Recognition, Milan, Italy (2021)

  121. De Silva, C.W.: Vibration and Shock Handbook. CRC Press, Boca Raton (2005)

    Book  MATH  Google Scholar 

  122. Cai, L.-W.: Fundamentals of Mechanical Vibrations. ASME/Wiley, Hoboken (2016)

    Book  MATH  Google Scholar 

  123. Sun, M.: Insect flight dynamics: stability and control. Rev. Mod. Phys. 86, 615–646 (2014). https://doi.org/10.1103/RevModPhys.86.615

    Article  Google Scholar 

  124. Ma, K.Y., Chirarattananon, P., Fuller, S.B., Wood, R.J.: Controlled flight of a biologically inspired, insect-scale robot. Science 340, 603–607 (2013). https://doi.org/10.1126/science.1231806

    Article  Google Scholar 

  125. Huang, S., Wensman, J.P., Ferris, D.P.: Locomotor adaptation by transtibial amputees walking with an experimental powered prosthesis under continuous myoelectric control. IEEE Trans. Neural Syst. Rehabil. Eng. 24, 573–581 (2016). https://doi.org/10.1109/TNSRE.2015.2441061

    Article  Google Scholar 

  126. Edwards, C., Spurgeon, S.K.: Sliding Mode Control. CRC Press, Boca Raton (1998)

    Book  MATH  Google Scholar 

  127. Kwatny, H.G., Blankenship, G.: Nonlinear Control and Analytical Mechanics. Birkhauser, Boston (2000)

    Book  MATH  Google Scholar 

  128. Popovic, M.B.: Biomechatronics. Academic Press, Cambridge (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Israel Science Foundation Grant No. 1851/17 and by the Israel Ministry of Science and Technology Grant No. 3-17400.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arion Pons or Tsevi Beatus.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

A.1 Closed-form expressions for PEA and SEA work loops

In Sect. 2.1, we defined general work-loop profiles: \({G}^{\pm }\left(x\right)\) and \({F}^{\pm }\left(x\right)\) for PEA systems; and \({X}^{\pm }\left(F\right)\) and \({U}^{\pm }\left(F\right)\) for SEA systems. These constructs can be defined analytically for a range of different systems. For a linear PEA system, with \(D\left(\dot{x},\ddot{x}\right)=m\ddot{x}+c\dot{x}\), \({F}_{s}\left(x\right)=kx\), and undergoing simple-harmonic oscillation according to \(x\left(t\right)=\widehat{x}\mathrm{cos}\left(\omega t\right)\), we have [25]:

$$ \begin{aligned} G^{ \pm } \left( x \right) & = - m\omega^{2} x \pm c\omega \sqrt {\hat{x}^{2} - x^{2} } , \\ F^{ \pm } \left( x \right) & = kx - m\omega^{2} x \pm c\omega \sqrt {\hat{x}^{2} - x^{2} } . \\ \end{aligned} $$
(A.1.1)

And for a quadratically damped PEA system, with \(D\left(\dot{x},\ddot{x}\right)=m\ddot{x}+\mathrm{sgn}\left(\dot{x}\right)c{\dot{x}}^{2}\), undergoing the same simple-harmonic motion, we have [25]:

$$ \begin{aligned} G^{ \pm } \left( x \right) & = - m\omega^{2} x \pm c\omega^{2} \left( {x^{2} - \hat{x}^{2} } \right){,} \\ F^{ \pm } \left( x \right) & = kx - m\omega^{2} x \pm c\omega^{2} \left( {x^{2} - \hat{x}^{2} } \right). \\ \end{aligned} $$
(A.1.2)

These functions are defined for \(x\in \left[-\widehat{x},\widehat{x}\right]\). For a linear SEA system, with \(D\left(\dot{x},\ddot{x}\right)=m\ddot{x}+c\dot{x}\), \({F}_{s}\left(x\right)=kx\), and undergoing simple-harmonic oscillation according to \(x\left(t\right)=\widehat{x}\mathrm{cos}\left(\omega t\right)\), the construction is more complex. For \({X}^{\pm }\left(F\right)\) and \({U}^{\pm }\left(F\right)\) we have:

$$ \begin{aligned} X^{ \pm } \left( F \right) & = \frac{1}{{m^{2} \omega^{2} + c^{2} }}\left( { - mF \pm \frac{c}{\omega }\sqrt {\hat{x}^{2} \omega^{2} \left( {m^{2} \omega^{2} + c^{2} } \right) - F^{2} } } \right), \\ U^{ \pm } \left( F \right) & = \frac{F}{k} + \frac{1}{{m^{2} \omega^{2} + c^{2} }}\left( { - mF \pm \frac{c}{\omega }\sqrt {\hat{x}^{2} \omega^{2} \left( {m^{2} \omega^{2} + c^{2} } \right) - F^{2} } } \right), \\ \end{aligned} $$
(A.1.3)

where these functions are defined over the force range \(F\in \left[-\widehat{F},\widehat{F}\right]\), with \(\widehat{F}=\omega \widehat{x}\sqrt{{m}^{2}{\omega }^{2}+{c}^{2}}.\)

To compute the elastic-bound conditions, Eq. 6, one further profile is required: the derivatives \({{X}^{^{\prime}}}^{\pm }\left(F\right)\). These derivatives are given by:

$$ X^{\prime \pm } \left( F \right) = \frac{1}{{m^{2} \omega^{2} + c^{2} }}\left( { - m \mp \frac{cF}{{\omega \sqrt {\hat{x}^{2} \omega^{2} \left( {m^{2} \omega^{2} + c^{2} } \right) - F^{2} } }}} \right). $$
(A.1.4)

This completes the definition of work-loop profiles for these example systems.

A.2 Generalised triangle-wave function

To analyse frequency-band resonance in Sect. 4.1, we utilised a generalised triangle-like wave, allowing waveform alteration with associated frequency and offset modulation. This waveform was described via a freeplay-nonlinear time-invariant ODE. The time-domain solution to this ODE is:

$$ \begin{aligned} \ddot{x}\left( t \right) & = \left\{ {\begin{array}{*{20}l} { - A\left( \delta \right)\frac{{\hat{x}}}{{T^{2} }}\cos \left( {\frac{{\pi t}}{{2\delta T}}} \right)} \hfill & {\quad 0 \le t \le \delta T} \hfill \\ {A\left( \delta \right)\frac{{\hat{x}}}{{T^{2} }}\cos \left( {\frac{{\pi \left( {t - \frac{1}{2}T} \right)}}{{2\delta T}}} \right)} \hfill & {\quad \left( {\frac{1}{2} - \delta } \right)T \le t \le \left( {\frac{1}{2} + \delta } \right)T} \hfill \\ { - A\left( \delta \right)\frac{{\hat{x}}}{{T^{2} }}\cos \left( {\frac{{\pi \left( {t - T} \right)}}{{2\delta T}}} \right)} \hfill & {\quad T\left( {1 - \delta } \right) \le t \le T} \hfill \\ 0 \hfill & {\quad {\text{o.w.}}} \hfill \\ \end{array} } \right. \\ A\left( \delta \right) & = \frac{{2\pi ^{2} }}{{\left( {8 - 4\pi } \right)\delta ^{2} + \pi \delta }},~\;\delta = \delta \left( R \right) = \frac{1}{4}\frac{{\pi \left( {1 - R} \right)}}{{\left( {2 - \pi } \right)R + \pi }}, \\ \end{aligned} $$
(A.2.1)

with \(\dot{x}\left(t\right)\) and \(x\left(t\right)\) as:

$$ \dot{x}\left( t \right) = \int \limits_{0}^{t} \ddot{x}\left( \tau \right)\,{\text{d}}\tau , \;x\left( t \right) = \int \limits_{0}^{t} \dot{x}\left( \tau \right)\,{\text{d}}\tau + \hat{x}. $$
(A.2.2)

The parameter \(\delta \) is a time-domain analogue of \(R\), representing the time window over which the sinusoid velocity-reversal component acts, as per the piecewise component limits in Eq. A.2.1; and \(T\) is the waveform period, \(T=2\pi /\omega \). Analytical formulations of \(x\left(t\right)\), via Eq. A.2.2, are available, but these formulations are not required for frequency-band acceleration-matching, and so we use numerical integration for convenience.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pons, A., Beatus, T. Band-type resonance: non-discrete energetically optimal resonant states. Nonlinear Dyn 111, 1161–1192 (2023). https://doi.org/10.1007/s11071-022-07888-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07888-4

Keywords

Navigation