Skip to main content
Log in

Dynamics of stimuli-based fractional-order memristor-coupled tabu learning two-neuron model and its engineering applications

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

External stimulus has an impact on the functional behavior of the biological nervous system, and appropriate stimulus helps the organism to maintain neural function. Inspired by this, the effects of different external stimuli on the dynamical behaviors of neuron model are studied in this paper. Firstly, a fractional-order (FO) memristor-coupled tabu learning two-neuron model whose equilibrium points are symmetric about the origin and unstable is constructed. The dynamical behaviors of this neuron model under different stimuli are further discussed, which are no external stimulus, external forced current stimulus, and electromagnetic radiation (EMR), respectively. The neuron model without external stimulus has periodic attractors and transient chaos, but applying external stimulus to one of the neurons can produce abundant two-scroll chaotic attractors and multistability; especially, when the neuron model is stimulated by EMR, it can generate hyperchaotic attractors that have not been observed in the tabu learning neuron model before. Besides, the transient transition behaviors of the model under different stimuli are also studied. Then, a pseudo-random number generator is designed and its random performance is tested with NIST suite. Finally, it is applied to voice encryption, and the result shows that it has good encryption effect. Therefore, it can be said that the FO memristor-coupled tabu learning two-neuron model has superior randomness and is suitable for chaotic-based engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig.24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. Lin, H.R., Wang, C.H., Chen, C.J., et al.: Neural Bursting and Synchronization Emulated by Neural Networks and Circuits. IEEE Trans. Circ. Syst. I Reg. Pap. 68(8), 3397–3410 (2021). https://doi.org/10.1109/TCSI.2021.3081150

    Article  Google Scholar 

  2. Liu, Y., Huang, X., Li, Y.X., Shen, H.: Multistability of Hopfield neural networks with a designed discontinuous sawtooth-type activation function. Neurocomputing 455, 189–201 (2021). https://doi.org/10.1016/j.neucom.2021.05.045

    Article  Google Scholar 

  3. Korn, H., Faure, P.: Is there chaos in the brain? II. Experimental evidence and related models. Compt. Rendus Biol. 326(9), 787–840 (2003). https://doi.org/10.1016/j.crvi.2003.09.011

    Article  Google Scholar 

  4. Li, Z.J., Zhou, H.Y., Wang, M.J., Ma, M.L.: Coexisting firing patterns and phase synchronization in locally active memristor coupled neurons with HR and FN models. Nonlinear Dyn. 104(2), 1455–1473 (2021). https://doi.org/10.1007/s11071-021-06315-4

    Article  Google Scholar 

  5. Li, C.G., Chen, G.R., Liao, X.F., et al.: Hopf bifurcation and chaos in Tabu learning neuron models. Int. J. Bifurc. Chaos 15(8), 2633–2642 (2005). https://doi.org/10.1142/S0218127405013575

    Article  MathSciNet  MATH  Google Scholar 

  6. Doubla, I.S., Njitacke, Z.T., Ekonde, S., et al.: Multistability and circuit implementation of tabu learning two-neuron model: application to secure biomedical images in IoMT. Neural Comput. Appl. 33(21), 14945–14973 (2021). https://doi.org/10.1007/s00521-021-06130-3

    Article  Google Scholar 

  7. Kawahara, M., Kato-Negishi, M., Tanaka, K.: Cross talk between neurometals and amyloidogenic proteins at the synapse and the pathogenesis of neurodegenerative diseases. Metallomics 9(6), 619–633 (2017). https://doi.org/10.1039/c7mt00046d

    Article  Google Scholar 

  8. Ding, D.W., Jiang, L., Hu, Y.B., et al.: Hidden dynamical behaviors, sliding mode control and circuit implementation of fractional-order memristive Hindmarsh−Rose neuron model. Eur. Phys. J. Plus 136(5), 521 (2021). https://doi.org/10.1140/epjp/s13360-021-01107-6

    Article  Google Scholar 

  9. Hu, X.Y., Liu, C.X.: Bursting and synchronization of coupled neurons under electromagnetic radiation. Complexity 2019, 4835379 (2019). https://doi.org/10.1155/2019/4835379

    Article  Google Scholar 

  10. Zhao, J.Y., Wang, Q.Y.: The dynamical role of electromagnetic induction in epileptic seizures: a double-edged sword. Nonlinear Dyn. 106(1), 975–988 (2021). https://doi.org/10.1007/s11071-021-06855-9

    Article  Google Scholar 

  11. Lu, L.L., Jia, Y., Kirunda, J.B., et al.: Effects of noise and synaptic weight on propagation of subthreshold excitatory postsynaptic current signal in a feed-forward neural network. Nonlinear Dyn. 95(2), 1673–1686 (2019). https://doi.org/10.1007/s11071-018-4652-9

    Article  Google Scholar 

  12. Wang, H.T., Chen, Y.: Spatiotemporal activities of neural network exposed to external electric fields. Nonlinear Dyn. 85(2), 881–891 (2016). https://doi.org/10.1007/s11071-016-2730-4

    Article  MathSciNet  Google Scholar 

  13. Li, J.J., Liu, S.B., Liu, W.M., et al.: Suppression of firing activities in neuron and neurons of network induced by electromagnetic radiation. Nonlinear Dyn. 83(1), 801–810 (2016). https://doi.org/10.1007/s11071-015-2368-7

    Article  MathSciNet  Google Scholar 

  14. Lin, H.R., Wang, C.H.: Influences of electromagnetic radiation distribution on chaotic dynamics of a neural network. Appl. Math. Comput. 369, 124840 (2020). https://doi.org/10.1016/j.amc.2019.124840

    Article  MathSciNet  MATH  Google Scholar 

  15. Ma, J., Zhang, G., Hayat, T., Ren, G.D.: Model electrical activity of neuron under electric field. Nonlinear Dyn. 95(2), 1585–1598 (2019). https://doi.org/10.1007/s11071-018-4646-7

    Article  Google Scholar 

  16. Ge, M.Y., Lu, L.L., Xu, Y., et al.: Effects of electromagnetic induction on signal propagation and synchronization in multilayer Hindmarsh-Rose neural networks. Eur. Phys. J. Spec. Top 228(11), 2455–2464 (2019). https://doi.org/10.1140/epjst/e2019-900006-2

    Article  Google Scholar 

  17. Li, H.M., Lu, Y.C., Li, C.L.: Dynamics in stimulation-based tabu learning neuron model. AE U-Int. J. Electron. Commun 142, 153983 (2021). https://doi.org/10.1016/j.aeue.2021.153983

    Article  Google Scholar 

  18. Lin, H.R., Wang, C.H., Deng, Q.L., et al.: Review on chaotic dynamics of memristive neuron and neural network. Nonlinear Dyn. 106(1), 959–973 (2021). https://doi.org/10.1007/s11071-021-06853-x

    Article  Google Scholar 

  19. Lv, M., Ma, J.: Multiple modes of electrical activities in a new neuron model under electromagnetic radiation. Neurocomputing 205, 375–381 (2016). https://doi.org/10.1016/j.neucom.2016.05.004

    Article  Google Scholar 

  20. Lin, H.R., Wang, C.H., Li, C., et al.: Hyperchaotic memristive ring neural network and application in medical image encryption. Nonlinear Dyn. (2022). https://doi.org/10.1007/s11071-022-07630-0

    Article  Google Scholar 

  21. Liao, M.L., Wang, C.H., Sun, Y.C., et al.: Memristor-based affective associative memory neural network circuit with emotional gradual processes. Neural. Comput. Appl. 34(16), 13667–13682 (2022). https://doi.org/10.1007/s00521-022-07170-z

    Article  Google Scholar 

  22. Jia, J., Huang, X., Li, Y.X., et al.: Global stabilization of fractional-order memristor-based neural networks with time delay. IEEE Trans. Neural Netw. Learn. Syst. 31(3), 997–1009 (2020). https://doi.org/10.1109/TNNLS.2019.2915353

    Article  MathSciNet  Google Scholar 

  23. Yan, Z.L., Huang, X., Cao, J.D.: Variable-sampling-period dependent global stabilization of delayed memristive neural networks based on refined switching event-triggered control. Sci. China Inf. Sci. 63(11), 159–174 (2020). https://doi.org/10.1007/s11432-019-2664-7

    Article  MathSciNet  Google Scholar 

  24. Lai, Q., Wan, Z.Q., Zhang, H., Chen, G.R.: Design and analysis of multiscroll memristive hopfield neural network with adjustable memductance and application to image encryption. IEEE Trans. Neural Netw. Learn. Syst. (2022). https://doi.org/10.1109/TNNLS.2022.3146570

    Article  Google Scholar 

  25. Hou, L.P., Bao, H., Xu, Q., Chen, M., Bao, B.C.: Coexisting infinitely many nonchaotic attractors in a memristive weight-based tabu learning neuron. Int. J. Bifur. Chaos 31(12), 2150189 (2021). https://doi.org/10.1142/S0218127421501893

    Article  MathSciNet  MATH  Google Scholar 

  26. Ren, G.D., Xu, Y., Wang, C.N.: Synchronization behavior of coupled neuron circuits composed of memristors. Nonlinear Dyn. 88(2), 893–901 (2017). https://doi.org/10.1007/s11071-016-3283-2

    Article  Google Scholar 

  27. Bao, B.C., Yang, Q.F., Zhu, D., Zhang, Y.Z., et al.: Initial-induced coexisting and synchronous firing activities in memristor synapse-coupled Morris-Lecar bi-neuron network. Nonlinear Dyn. 99(3), 2339–2354 (2020). https://doi.org/10.1007/s11071-019-05395-7

    Article  Google Scholar 

  28. Lin, H., Wang, C., Hong, Q., Sun, Y.: A multi-stable memristor and its application in a neural network. IEEE Trans. Circ. Syst. II Express Br. 67(12), 3472–3476 (2020). https://doi.org/10.1109/TCSII.2020.3000492

    Article  Google Scholar 

  29. Huang, L.L., Liu, S., Xiang, J.H., et al.: Design and multistability analysis of memristor-based jerk hyperchaos system with controllable offset. Eur. Phys. J. Spec. Top. (2022). https://doi.org/10.1140/epjs/s11734-022-00554-1

    Article  Google Scholar 

  30. Zhang, Y.Z., Liu, Z., Wu, H.G., et al.: Two-memristor-based chaotic system and its extreme multistability reconstitution via dimensionality reduction analysis. Chaos Solit. Fractals 127, 354–363 (2019). https://doi.org/10.1016/j.chaos.2019.07.004

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, R.H., Dong, E.Z., Tong, J.G., et al.: A new autonomous memristive megastable oscillator and its Hamiltonian-energy-dependent megastability. Chaos 32(1), 013127 (2022). https://doi.org/10.1063/5.0066951

    Article  MathSciNet  Google Scholar 

  32. Li, C.L., Yang, Y.Y., Yang, X.B., et al.: A tristable locally active memristor and its application in Hopfield neural network. Nonlinear Dyn. 108(2), 1697–1717 (2022). https://doi.org/10.1007/s11071-022-07268-y

    Article  Google Scholar 

  33. Xu, Q., Liu, T., Feng, C.T., et al.: Continuous non-autonomous memristive Rulkov model with extreme multistability. Chin. Phys. B 30(12), 128702 (2021). https://doi.org/10.1088/1674-1056/ac2f30

    Article  Google Scholar 

  34. Zhang, S., Zheng, J.H., Wang, X.P., Zeng, Z.G.: A novel no-equilibrium HR neuron model with hidden homogeneous extreme multistability. Chaos Solit. Fractals 145, 110761 (2021). https://doi.org/10.1016/j.chaos.2021.110761

    Article  MathSciNet  MATH  Google Scholar 

  35. Bao, H., Liu, W.B., Chen, M.: Hidden extreme multistability and dimensionality reduction analysis for an improved non-autonomous memristive FitzHugh-Nagumo circuit. Nonlinear Dyn. 96(3), 1879–1894 (2019). https://doi.org/10.1007/s11071-019-04890-1

    Article  MATH  Google Scholar 

  36. Chen, J.J., Chen, B.S., Zeng, Z.G.: O(t(-alpha))-synchronization and Mittag-Leffler synchronization for the fractional-order memristive neural networks with delays and discontinuous neuron activations. Neural Netw 100, 10–24 (2018). https://doi.org/10.1016/j.neunet.2018.01.004

    Article  MATH  Google Scholar 

  37. Xie, W.L., Wang, C.H., Lin, H.R.: A fractional-order multistable locally active memristor and its chaotic system with transient transition, state jump. Nonlinear Dyn 104(4), 4523–4541 (2021). https://doi.org/10.1007/s11071-021-06476-2

    Article  Google Scholar 

  38. Wu, J., Wang, G.Y., et al.: A nonvolatile fractional order memristor model and its complex dynamics. Entropy 21(10), 955 (2019). https://doi.org/10.3390/e21100955

    Article  MathSciNet  Google Scholar 

  39. Magin, R.L.: Fractional calculus models of complex dynamics in biological tissues. Comput. Math. Appl. 59(5), 1586–1593 (2009). https://doi.org/10.1016/j.camwa.2009.08.039

    Article  MathSciNet  MATH  Google Scholar 

  40. Yu, Y.J., Shi, M., Kang, H.Y., et al.: Hidden dynamics in a fractional-order memristive Hindmarsh-Rose model. Nonlinear Dyn. 100(1), 891–906 (2020). https://doi.org/10.1007/s11071-020-05495-9

    Article  MATH  Google Scholar 

  41. Xin, Y., Zhang, G.J.: The synchronization behaviors of memristive synapse-coupled fractional-order neuronal networks. IEEE Access 9, 131844–131857 (2021). https://doi.org/10.1109/ACCESS.2021.3115149

    Article  Google Scholar 

  42. Ding, D.W., Xiao, H., Yang, Z.L., et al.: Coexisting multi-stability of Hopfield neural network based on coupled fractional-order locally active memristor and its application in image encryption. Nonlinear Dyn 108(4), 4433–4458 (2022). https://doi.org/10.1007/s11071-022-07371-0

    Article  Google Scholar 

  43. Xu, S.C., Wang, X.Y., Ye, X.L.: A new fractional-order chaos system of Hopfield neural network and its application in image encryption. Chaos Solit. Fractals 157, 111889 (2022). https://doi.org/10.1016/j.chaos.2022.111889

    Article  MathSciNet  MATH  Google Scholar 

  44. Bao, B.C., Hou, L.P., Zhu, Y.X., et al.: Bifurcation analysis and circuit implementation for a tabu learning neuron model. AE U-Int. J. Electron. Commun 121, 153235 (2020). https://doi.org/10.1016/j.aeue.2020.153235

    Article  Google Scholar 

  45. Ding, D.W., Jiang, L., Hu, Y.B., et al.: Hidden coexisting firings in fractional-order hyperchaotic memristor-coupled HR neural network with two heterogeneous neurons and its applications. Chaos 31(8), 083107 (2021). https://doi.org/10.1063/5.0053929

    Article  MathSciNet  Google Scholar 

  46. Cai, S.M., Hou, M.Y.: Quasi-synchronization of fractional-order heterogeneous dynamical networks via aperiodic intermittent pinning control. Chaos Solit. Fractals 146, 110901 (2021). https://doi.org/10.1016/j.chaos.2021.110901

    Article  MathSciNet  MATH  Google Scholar 

  47. Yu, F., Shen, H., Zhang, Z.N., et al.: Dynamics analysis, hardware implementation and engineering applications of novel multi-style attractors in a neural network under electromagnetic radiation. Chaos Solit. Fractals 152, 111350 (2021). https://doi.org/10.1016/j.chaos.2021.111350

    Article  MathSciNet  MATH  Google Scholar 

  48. Xu, Q., Song, Z., Bao, H., et al.: Two-neuron-based non-autonomous memristive Hopfield neural network: numerical analyses and hardware experiments. AE U-Int. J. Electron. Commun. 96, 66–74 (2018). https://doi.org/10.1016/j.aeue.2018.09.017

    Article  Google Scholar 

  49. Chen, Z., Li, C.L., Li, H.M., Yang, Y.Y.: A S-type locally active memristor and its application in chaotic circuit. Eur. Phys. J. Spec. Top. (2022). https://doi.org/10.1140/epjs/s11734-022-00563-0

    Article  Google Scholar 

  50. Nguyen, N.T., Bui, T., Gagnon, G., et al.: Designing a pseudorandom bit generator with a novel five-dimensional-hyperchaotic system. IEEE Trans. Ind. Electron. 69(6), 6101–6110 (2021). https://doi.org/10.1109/TIE.2021.3088330

    Article  Google Scholar 

  51. Çavuşoğlu, Ü., Akgül, A., Zengin, A., Pehlivan, I.: The design and implementation of hybrid RSA algorithm using a novel chaos based RNG. Chaos Solit. Fractals 104, 655–667 (2017). https://doi.org/10.1016/j.chaos.2017.09.025

    Article  Google Scholar 

  52. Jahanshahi, H., et al.: A new fractional-order hyperchaotic memristor oscillator: dynamic analysis, robust adaptive synchronization, and its application to voice encryption. Appl. Math. Comput 383, 125310 (2020). https://doi.org/10.1016/j.amc.2020.125310

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongli Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, D., Chen, X., Yang, Z. et al. Dynamics of stimuli-based fractional-order memristor-coupled tabu learning two-neuron model and its engineering applications. Nonlinear Dyn 111, 1791–1817 (2023). https://doi.org/10.1007/s11071-022-07886-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07886-6

Keywords

Navigation