Skip to main content
Log in

Extended prescribed performance fault-tolerant control of autonomous surface vessels using event-triggered inputs

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates the prescribed performance control (PPC) problem of autonomous surface vessels with actuator faults. To ensure the error performance satisfaction and control simplicity, barrier Lyapunov function is utilized to establish PPC framework, in which the initial tracking constraint that inherently exists in the traditional method is removed via error-shifting transformation. To prevent the performance violation in the event of actuator faults, a computationally efficient adaptive fault-tolerant controller is derived using event-triggered inputs, which not only permits aperiodic control update to save communication resources, but also greatly reduces the online computation burden because of avoiding the iterative update of neural networks weight. Through Lyapunov stability analysis, it is proven that all signals in the closed-loop system are semi-globally uniformly ultimately bounded, and both position and yaw angle tracking errors can converge to their prescribed regions in finite time from any initial values. Finally, the effectiveness and superiority of the proposed scheme are verified by simulation examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Ringback, R., Wei, J.Q., Erstorp, E.S., Kuttenkeuler, J., Johansen, T.A., Johansson, K.H.: Multi-agent formation tracking for autonomous surface vehicles. IEEE Trans. Control Syst. Technol. 29(6), 2287–2298 (2021)

    Article  Google Scholar 

  2. Bell, Z.I., Nezvadovitz, J., Parikh, A., Schwartz, E.M., Dixon, W.E.: Global exponential tracking control for an autonomous surface vessel: an integral concurrent learning approach vehicles. IEEE J. Ocean. Eng. 45(2), 362–370 (2020)

    Article  Google Scholar 

  3. Guo, G., Zhang, P.F.: Asymptotic stabilization of USVs with actuator dead-zones and yaw constraints based on fixed-time disturbance observer. IEEE Trans. Veh. Technol. 69(1), 302–316 (2020)

    Article  Google Scholar 

  4. Loueipour, M., Keshmiri, M., Danesh, M., Mojiri, M.: Wave filtering and state estimation in dynamic positioning of marine vessels using position measurement. IEEE Trans. Instrum. Meas. 64(12), 3253–3261 (2015)

    Article  Google Scholar 

  5. Hao, L.Y., Zhang, H., Guo, G., Li, H.: Quantized sliding mode control of unmanned marine vehicles: various thruster faults tolerated with a unified model. IEEE Trans. Syst. Man Cybern. Syst. 51(3), 2012–2026 (2021)

    Google Scholar 

  6. Zhang, J.-X., Chai, T.Y.: Singularity-free continuous adaptive control of uncertain underactuated surface vessels with prescribed performance. IEEE Trans. Syst. Man Cybern. Syst. (2021). https://doi.org/10.1109/TSMC.2021.3129798

    Article  Google Scholar 

  7. Witkowska, A., Smierzchalski, R.: Adaptive dynamic control allocation for dynamic positioning of marine vessel based on backstepping method and sequential quadratic programming. Ocean Eng. 163, 570–582 (2018)

    Article  Google Scholar 

  8. Park, B.S., Yoo, S.J.: Robust fault-tolerant tracking with predefined performance for underactuated surface vessels. Ocean Eng. 115, 159–167 (2016)

    Article  Google Scholar 

  9. Zhang, C., Cao, C.Y., Guo, C., Li, T.S., Guo, M.Z.: Navigation multisensor fault diagnosis approach for an unmanned surface vessel adopted particle-filter method. IEEE Sens. J. 21(23), 27093–27105 (2021)

    Article  Google Scholar 

  10. Wang, Y.-L., Han, Q.-L.: Network-based fault detection filter and controller coordinated design for unmanned surface vehicles in network environments. IEEE Tras. Ind. Inform. 12(5), 1753–1765 (2016)

    Article  MathSciNet  Google Scholar 

  11. Lin, Y.Y., Du, J.L., Zhu, G.B., Fang, H.Z.: Thruster fault-tolerant control for dynamic positioning of vessels. Appl. Ocean Res. 80, 118–124 (2018)

    Article  Google Scholar 

  12. Chen, L.H., Liu, M., Shi, Y., Zhang, H.J., Zhao, E.J.: Adaptive fault estimation for unmanned surface vessels with a neural network observer approach. IEEE. Trans. Circuits Syst. I Reg. Papers 68(1), 416–425 (2021)

    Article  MathSciNet  Google Scholar 

  13. Zhang, G.Q., Chu, S.J., Jin, X., Zhang, W.D.: Composite neural learning fault-tolerant control for underactuated vehicles with event-triggered input. IEEE Trans. Cybern. 51(5), 2327–2338 (2021)

    Article  Google Scholar 

  14. Zhu, G.B., Ma, Y., Li, Z.X., Malekian, R., Sotelo, M.: Event-triggered adaptive neural fault-tolerant control of underactuated MSVs with input saturation. IEEE Trans. Intell. Transp. Syst. (2021). https://doi.org/10.1109/TITS.2021.3066461

    Article  Google Scholar 

  15. Zhang, C.L., Zhang, G.Q., Zhang, X.K.: DVSL guidance-based composite neural path following control for underactuated cable-laying vessels using event-triggered inputs. Ocean Eng. (2021). https://doi.org/10.1016/j.oceaneng.2021.109713

    Article  Google Scholar 

  16. Bechlioulis, C.P., Rovithakis, G.A.: Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance. IEEE Trans. Autom. Control. 53(9), 2090–2099 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jia, Z.H., Hu, Z.H., Zhang, W.D.: Adaptive output-feedback control with prescribed performance for trajectory tracking of underactuated surface vessels. ISA Trans. 95, 18–26 (2019)

    Article  Google Scholar 

  18. Wang, N., Gao, Y., Zhang, X.F.: Data-driven performance-prescribed reinforcement learning control of an unmanned surface vehicle. IEEE Trans. Neural Netw. Learn. Syst. 32(12), 5456–5467 (2021)

    Article  MathSciNet  Google Scholar 

  19. Guo, G., Gao, Z.Y., Dong, K.: Prescribed-time formation control of surface vessels with asymmetric constraints on LOS range and bearing angles. Nonlinear Dyn. 104(4), 3701–3712 (2021)

    Article  Google Scholar 

  20. Dong, C., Ye, Q.Z., Dai, S.L.: Neural-network-based adaptive output-feedback formation tracking control of USVs under collision avoidance and connectivity maintenance constraints. Neurocomputing 401, 101–112 (2020)

    Article  Google Scholar 

  21. Dai, S.L., He, S.D., Cai, H., Yang, C.G.: Adaptive leader-follower formation control of underactuated surface vehicles with guaranteed performance. IEEE Trans. Syst. Man Cybern. Syst. 52(3), 1997–2008 (2022)

    Article  Google Scholar 

  22. Song, Y.-D., Zhou, S.Y.: Tracking control of uncertain nonlinear systems with deferred asymmetric time-varying full state constraints. Automatica 98, 314–322 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Do, K.D., Jiang, Z.P., Pan, J.: Robust adaptive path following of underactuated ships. Automatica 40(6), 929–944 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jin, X.: Fault tolerant finite-time leader follower formation control for autonomous surface vessels with LOS range and angle constraints. Automatiica 68, 228–236 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, D.C., Liu, Z., Chen, C.L.P., Zhang, Y.: Prescribed-time containment control with prescribed performance for uncertain nonlinear multi-agent systems. J. Frankl. Inst. 358(3), 1782–1811 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, J.-H., Lee, P.M., Jun, B.H., Lim, Y.K.: Point-to-point navigation of underactuated ships. Automatica 44(12), 3201–3205 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, J.Q., Zhang, G.Q., Li, B.: Robust adaptive neural cooperative control for the USV-UAV based on the LVS-LVA guidance principle. J. Mar. Sci. Eng. (2022). https://doi.org/10.3390/jmse10010051

    Article  Google Scholar 

  28. Xing, L.T., Wen, C.Y., Liu, Z.T., Su, H.Y., Cai, J.P.: Adaptive compensation for actuator failures with event-triggered input. Automatica 85, 129–136 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhang, J.-X., Yang, G.-H.: Low-complexity adaptive tracking control of MIMO nonlinear systems with unknown control directions. Int. J. Robust Nonlinear Control 29(7), 2203–2222 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. Dimanidis, I.S., Bechlioulis, C.P., Rovithakis, G.A.: Output feedback approximation-free prescribed performance trackingc control for uncertain MIMO nonlinear systems. IEEE Trans. Autom. Control 65(12), 5058–5069 (2020)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The paper is partially supported by the National Natural Science Foundation of China under Grant 62173079 and Grant U1808205. The authors would like to thank anonymous reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Contributions

C-LZ performed conceptualization, methodology, software, validation, writing—original draft, writing—review & editing. GG done funding acquisition, supervision, project administration, and writing—review & editing.

Corresponding author

Correspondence to Ge Guo.

Ethics declarations

Conflict of interest

The authors declare that no potential conflict of interest exists.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, CL., Guo, G. Extended prescribed performance fault-tolerant control of autonomous surface vessels using event-triggered inputs. Nonlinear Dyn 111, 1315–1327 (2023). https://doi.org/10.1007/s11071-022-07881-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07881-x

Keywords

Navigation