Skip to main content
Log in

Interval type-2 fuzzy control for nonlinear system via adaptive memory-event-triggered mechanism

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This article focuses on the issue of adaptive memory-event-triggered control for a class of interval type-2 Takagi–Sugeno fuzzy system (IT-2 TSFS) subjected to network-induced delays. Firstly, the IT-2 TSFS is established to effectively describe the nonlinearities and parameter uncertainties. Secondly, in order to decrease the burden of network transmission, a novel adaptive memory-event-triggered mechanism (AMETM) is presented by employing a buffer in event-triggered module. The historical information stored in the buffer is used to select the “necessary” control signal. Furthermore, the proposed AMETM can adaptively adjust the threshold to balance the data releasing rate and control performance. Then, the stability analysis is carried out by utilizing the discontinuous looped Lyapunov–Krasovskii functional. The properties of fuzzy membership functions are used to derive the improved stability conditions, which ensure the \(H_{\infty }\) performance. Finally, the numerical example is represented to verify the advantages of the control method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Li, H., Zhang, Z., Yan, H., et al.: Adaptive event-triggered fuzzy control for uncertain active suspension systems. IEEE Trans. Cybern. 49(12), 4388–4397 (2018)

    Article  Google Scholar 

  2. Mo, Y., Chabukswar, R., Sinopoli, B.: Detecting integrity attacks on SCADA systems. IEEE Trans. Control Syst. Technol. 22(4), 1396–1407 (2013)

    Google Scholar 

  3. Peng, C., Zhang, J., Yan, H.: Adaptive event-triggering \({H} _ {\infty } \) load frequency control for network-based power systems. IEEE Trans. Ind. Electron. 65(2), 1685–1694 (2017)

    Article  Google Scholar 

  4. Gupta, R.A., Chow, M.Y.: Networked control system: overview and research trends. IEEE Trans. Ind. Electron. 57(7), 2527–2535 (2009)

    Article  Google Scholar 

  5. Zhang, D., Shi, P., Wang, Q.G., et al.: Analysis and synthesis of networked control systems: a survey of recent advances and challenges. ISA Trans. 66, 376–392 (2017)

    Article  Google Scholar 

  6. Liu, B., Liu, Y.: Mixed event-triggered mechanism modeling and controlling for networked control systems with time-varying delays and uncertainties. Asian J. Control 22(2), 803–817 (2020)

    Article  MathSciNet  Google Scholar 

  7. Lang, J., Zhang, Y., Zhang, B.: Event-triggered network-based synchronization of delayed neural networks. Neurocomputing 190, 155–164 (2016)

    Article  Google Scholar 

  8. Xue, W., Mao, W.: Asymptotic stability and finite-time stability of networked control systems: analysis and synthesis. Asian J. Control 15(5), 1376–1384 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Li, K., Hua, C.C., You, X., et al.: Output feedback-based consensus control for nonlinear time delay multiagent systems. Automatica 111(1), 108669 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hua, C.C., Li, K., Guan, X.P.: Semi-global/global output consensus for nonlinear multiagent systems with time delays. Automatica 103, 480–489 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hua, C.C., Guan, X.P.: Smooth dynamic output feedback control for multiple time-delay systems with nonlinear uncertainties. Automatica 68, 1–8 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hu, S., Yue, D., Peng, C., et al.: Event-triggered controller design of nonlinear discrete-time networked control systems in T-S fuzzy model. Appl. Soft Comput. 30, 400–411 (2015)

    Article  Google Scholar 

  13. Ge, C., Park, J.H., Hua, C., et al.: Dissipativity analysis for T-S fuzzy system under memory sampled-data control. IEEE Trans. Cybern. 51(2), 961–969 (2019)

    Article  Google Scholar 

  14. Cai, X., Wang, J., Zhong, S., et al.: Fuzzy quantized sampled-data control for extended dissipative analysis of T-S fuzzy system and its application to WPGSs. J. Frankl. Inst. 358(2), 1350–1375 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hao, L.Y., Zhang, H., Li, T.S., et al.: Fault tolerant control for dynamic positioning of unmanned marine vehicles based on T-S fuzzy model with unknown membership functions. IEEE Trans. Veh. Technol. 70(1), 146–157 (2021)

    Article  Google Scholar 

  16. Liu, J., Yin, T., Cao, J., et al.: Security control for T-S fuzzy systems with adaptive event-triggered mechanism and multiple cyber-attacks. IEEE Trans. Syst. Man Cybern. Syst. 51(10), 6544–6554 (2020)

    Article  Google Scholar 

  17. Zhao, Y., Wang, J., Yan, F., et al.: Adaptive sliding mode fault-tolerant control for type-2 fuzzy systems with distributed delays. Inf. Sci. 473, 227–238 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Du, Z., Kao, Y., Karimi, H.R., et al.: Interval type-2 fuzzy sampled-data \( H_ {\infty } \) control for nonlinear unreliable networked control systems. IEEE Trans. Fuzzy Syst. 28(7), 1434–1448 (2019)

    Article  Google Scholar 

  19. Zheng, W., Zhang, Z., Wang, H., et al.: Robust \({H_{\infty }}\) amic output feedback control for interval type-2 T-S fuzzy multiple time-varying delays systems with external disturbance. J. Frankl. Inst. 357(6), 3193–3218 (2020)

    Article  MATH  Google Scholar 

  20. Lian, Z., Shi, P., Lim, C.C.: Hybrid-triggered interval type-2 fuzzy control for networked systems under attacks. Inf. Sci. 567, 332–347 (2021)

    Article  MathSciNet  Google Scholar 

  21. Yang, Y., Niu, Y., Reza, Karimi H.: Dynamic learning control design for interval type-2 fuzzy singularly perturbed systems: a component-based event-triggering protocol. Int. J. Robust Nonlinear Control 32(5), 2518–2535 (2022)

    Article  MathSciNet  Google Scholar 

  22. Wang, Y., Zhang, T., Ren, J.: A novel adaptive event-triggering scheme for network descriptor systems with time-delay. Int. J. Robust Nonlinear Control 30(18), 7947–7961 (2020)

    Article  MathSciNet  Google Scholar 

  23. Shi, P., Wang, H., Lim, C.C.: Network-based event-triggered control for singular systems with quantizations. IEEE Trans. Ind. Electron. 63(2), 1230–1238 (2015)

    Article  Google Scholar 

  24. Peng, C., Han, Q.L., Yue, D.: To transmit or not to transmit: a discrete event-triggered communication scheme for networked Takagi–Sugeno fuzzy systems. IEEE Trans. Fuzzy Syst. 21(1), 164–170 (2012)

    Article  Google Scholar 

  25. Lei, T., Meng, W., Zhao, K., et al.: Adaptive asymptotic tracking control of constrained multi-input multi-output nonlinear systems via event-triggered strategy. Int. J. Robust Nonlinear Control 31(5), 1479–1496 (2021)

    Article  MathSciNet  Google Scholar 

  26. Zhang, J., Peng, C., Du, D., et al.: Adaptive event-triggered communication scheme for networked control systems with randomly occurring nonlinearities and uncertainties. Neurocomputing 174, 475–482 (2016)

    Article  Google Scholar 

  27. Peng, C., Yang, M., Zhang, J., et al.: Network-based \(H_{\infty }\) control for T-S fuzzy systems with an adaptive event-triggered communication scheme. Fuzzy Sets Syst. 329, 61–76 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Begnini, M., Bertol, D.W., Martins, N.A.: A robust adaptive fuzzy variable structure tracking control for the wheeled mobile robot: simulation and experimental results. Control. Eng. Pract. 64, 27–43 (2017)

    Article  Google Scholar 

  29. Ding, Z.: Adaptive consensus output regulation of a class of nonlinear systems with unknown high-frequency gain. Automatica 51, 348–355 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang, Z.M., He, Y., Wu, M., et al.: Exponential synchronization of chaotic neural networks with time-varying delay via intermittent output feedback approach. Appl. Math. Comput. 314, 121–132 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Du, Z., Kao, Y., Park, J.H., et al.: Fuzzy event-triggered control for nonlinear networked control systems. J. Frankl. Inst. 359(6), 2593–2607 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, Z., Yan, H., Zhang, H., et al.: Aperiodic sampled-data-based control for interval type-2 fuzzy systems via refined adaptive event-triggered communication scheme. IEEE Trans. Fuzzy Syst. 29(2), 310–321 (2020)

    Article  Google Scholar 

  33. Yan, H., Hu, C., Zhang, H., et al.: \( H_ {\infty } \) output tracking control for networked systems with adaptively adjusted event-triggered scheme. IEEE Trans. Syst. Man Cybern. Syst. 49(10), 2050–2058 (2018)

  34. Yang, H., Wang, X., Park, J.H.: Sampled-data-based dissipative stabilization of IT-2 TSFSs via fuzzy adaptive event-triggered protocol. IEEE Trans. Cybern. (2021). https://doi.org/10.1109/TCYB.2021.3105058

    Article  Google Scholar 

  35. Peng, C., Zhang, J.: Event-triggered output-feedback \(H_{\infty }\) control for networked control systems with time-varying sampling. IET Control Theory Appl. 9(9), 1384–1391 (2015)

    Article  MathSciNet  Google Scholar 

  36. Peng, C., Han, Q.L.: A novel event-triggered transmission scheme and \({{\cal{L} }} _ 2 \) control co-design for sampled-data control systems. IEEE Trans. Autom. Control 58(10), 2620–2626 (2013)

    Article  MATH  Google Scholar 

  37. Tian, E., Peng, C.: Memory-based event-triggering \(H_{\infty }\) load frequency control for power systems under deception attacks. IEEE Trans. Cybern. 50(11), 4610–4618 (2020)

    Article  Google Scholar 

  38. Chen, G., Chen, Y., Zeng, H.B.: Event-triggered \(H_{\infty }\) filter design for sampled-data systems with quantization. ISA Trans. 101, 170–176 (2020)

    Article  Google Scholar 

  39. Yue, D., Tian, E., Han, Q.L.: A delay system method for designing event-triggered controllers of networked control systems. IEEE Trans. Autom. Control 58(2), 475–481 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Li, M., Zhao, J., Xia, J., et al.: Non-fragile extended dissipative control for event-triggered networked stochastic systems. Int. J. Syst. Sci. 51(4), 746–758 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  41. Park, P.G., Ko, J.W., Jeong, C.: Reciprocally convex approach to stability of systems with time-varying delays. Automatica 47(1), 235–238 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sababheh, M., Choi, D.: A complete refinement of Young’s inequality. J. Math. Anal. Appl. 440(1), 379–393 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Ge.

Ethics declarations

Conflict of interest

There is no conflicts of interests/competing interests

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, C., Liu, C., Liu, Y. et al. Interval type-2 fuzzy control for nonlinear system via adaptive memory-event-triggered mechanism. Nonlinear Dyn 111, 1301–1314 (2023). https://doi.org/10.1007/s11071-022-07880-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07880-y

Keywords

Navigation