Skip to main content
Log in

Modelling and analysis of coupling dynamics of swinging a lower limb exoskeleton

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Exoskeleton is a promising technology to enhance the mobility of aged and disabled people. With comfortable human–exoskeleton interaction, mechanical and control designers aim at accurately tracking a desired trajectory, while saving the wearer’s energy expenditure is the preference from the viewpoint of biomechanics. Given all of these effects, we propose a new model, consisting of the swing dynamics of both human and robot’s lower extremities coupled by damped springs representing elastic and viscous properties of band and human tissue. With the coupling coefficients identified with an experimental platform, the analytical model yields consistent results compared with an experimental exoskeleton, especially in the prediction of the interactive forces. Further analyses are then performed based on this validated model, revealing the influences of desired trajectory, mass ratio, misalignment, coupling points, health condition and band tightness on the human–exoskeleton coupling dynamics. It is found that introducing gravity compensation and tuning the feedback gain improve the tracking accuracy, but hardly change the interactive force. The most comfortable interaction requires a healthy wearer coupled with a lightweight exoskeleton without any misalignment, but properly changing the trajectory, coupling points and tightness can partly reduce the interactive forces if the ideal condition is unachievable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

\(\dot{x}\) :

Derivative of x with respect to time t

\(\text {sgn}(x)\) :

Sign function of x

\(\text {sat}(x,y)\) :

Saturation function of x between the values \([-y,y]\)

\(\varvec{}{\theta }_\text {d}\) :

Vector of desired joint angles    [rad]

\(\varvec{}{\theta }_{i_1}\) :

Vector of joint angles: human (\(i_1=\text {h}\)) or robot (\(i_1=\text {r}\))             [rad]

\(\varvec{}{\tau }_\text {h}^\text {a}\) :

Vector of human active joint torques    [N m]

\(\varvec{}{\tau }_\text {h}^\text {ida}\) :

Vector of human active joint torques obtained by inverse dynamics analysis             [N m]

\(\varvec{}{\tau }_{i_1}\) :

Vector of joint torques: human (\(i_1=\text {h}\)) or robot (\(i_1=\text {r}\))             [N m]

\(\varvec{}{\tau }_{i_1}^\text {i}\) :

Vector of coupling joint torques: human (\(i_1=\text {h}\)) or robot (\(i_1=\text {r}\))    [N m]

\(\varvec{}{\tau }_\text {r}^\text {c}\) :

Vector of robot’s controlling joint torques    [N m]

\(\varvec{}{\tau }_\text {r}^\text {f}\) :

Vector of robot’s frictional joint torques    [N m]

\(\mathbf {C}_{i_1}(\varvec{}{\theta }_{i_1},\dot{\varvec{}{\theta }}_{i_1})\) :

Coriolis and centripetal matrix: human (\(i_1=\text {h}\)) or robot (\(i_1=\text {r}\))       [\(\text {N m s}\text { rad}^{-1}\)]

\(\mathbf {e}_{i_1}\) :

Vector of tracking errors: human (\(i_1=\text {h}\)) or robot (\(i_1=\text {r}\))    [rad]

\(\mathbf {F}_{i_2}\) :

Vector of coupling forces: thigh (\(i_2=\text {t}\)) or shank (\(i_2=\text {s}\))    [N]

\(\mathbf {G}_{i_1}(\varvec{}{\theta }_{i_1})\) :

Gravitational vector: human (\(i_1=\text {h}\)) or robot (\(i_1=\text {r}\))   [N m]

\(\mathbf {J}_{i_1,i_2}\) :

Jacobian matrix: human (\(i_1=\text {h}\)) or robot (\(i_1=\text {r}\)); thigh (\(i_2=\text {t}\)) or shank (\(i_2=\text {s}\))   [m]

\(\mathbf {M}_{i_1}(\varvec{}{\theta }_{i_1})\) :

Inertial matrix: human (\(i_1=\text {h}\)) or robot (\(i_1=\text {r}\))[\(\text {N m s}^2\text { rad}^{-1}\)]

\(\mathbf {s}_{i_1,i_2}\) :

Coordinate of coupling point: human (\(i_1=\text {h}\)) or robot (\(i_1=\text {r}\)); thigh (\(i_2=\text {t}\)) or shank (\(i_2=\text {s}\))   [m]

\(\Delta \mathbf {s}_{i_2}\) :

Vector of human–exoskeleton relative displacement: thigh (\(i_2=\text {t}\)) or shank (\(i_2=\text {s}\))   [m]

\(\alpha \) :

Angle between human and robot’s thighs due to hip misalignment    [rad]

\(\beta \) :

Angle of hip misalignment[rad]

\(\gamma \) :

Angle between human and robot’s shanks due to hip misalignment    [rad]

\(\theta _{i_1,i_3}\) :

Joint angle: human (\(i_1=\text {h}\)) or robot (\(i_1=\text {r}\)); hip (\(i_3=\text {h}\)) or knee (\(i_3=\text {k}\))   [rad]

\(\tau _{\text {h},i_3}^\text {a}\) :

Human active joint torque: hip (\(i_3=\text {h}\)) or knee (\(i_3=\text {k}\))   [N m]

\(\tau _{\text {h},i_3}^\text {ida}\) :

Human active joint torque based on inverse dynamics analysis: hip (\(i_3=\text {h}\)) or knee (\(i_3=\text {k}\))   [N m]

\(\tau _{\text {h},i_3}^\text {max}\) :

Maximum active joint torque of healthy people: hip (\(i_3=\text {h}\)) or knee (\(i_3=\text {k}\))   [N m]

\(\tau _{\text {r},i_3}^\text {sf}\) :

Static frictional torque in robot’s joint: hip (\(i_3=\text {h}\)) or knee (\(i_3=\text {k}\))   [N m]

\(\tau _{i_1,i_3}\) :

Joint torque: human (\(i_1=\text {h}\)) or robot (\(i_1=\text {r}\)); hip (\(i_3=\text {h}\)) or knee (\(i_3=\text {k}\))   [N m]

\(\tau _{i_1,i_3}^\text {i}\) :

Coupling joint torque: human (\(i_1=\text {h}\)) or robot (\(i_1=\text {r}\)); hip (\(i_3=\text {h}\)) or knee (\(i_3=\text {k}\))   [N m]

\(\omega \) :

Swing frequency      [\(\text {rad s}^{-1}\)]

a :

Magnitude of hip misalignment    [m]

\(b_{i_2}\) :

Coupling damping: thigh (\(i_2=\text {t}\)) or shank (\(i_2=\text {s}\))      [\(\text {N s m}^{-1}\)]

\(c_{i_3}\) :

Coefficient of viscous friction in robot joint: hip (\(i_3=\text {h}\)) or knee (\(i_3=\text {k}\))   [\(\text {N m s rad}^{-1}\)]

\(c_{i_1,i_2}\) :

Centre of mass: human (\(i_1=\text {h}\)) or robot (\(i_1=\text {r}\)); thigh (\(i_2=\text {t}\)) or shank (\(i_2=\text {s}\))   [m]

\(d_\text {a}\) :

Vertical distance from the coupling point to the laser sensor above it   [m]

\(d_\text {b}\) :

Vertical distance from the coupling point to the laser sensor below it   [m]

D :

Horizontal displacement at the coupling point      [m]

\(D_\text {a}\) :

Horizontal displacement measured by the laser sensor above the coupling point   [m]

\(D_\text {b}\) :

Horizontal displacement measured by the laser sensor below the coupling point   [m]

\(e_{i_1,i_3}\) :

Tracking error in each joint: human (\(i_1=\text {h}\)) or robot (\(i_1=\text {r}\)); hip (\(i_3=\text {h}\)) or knee (\(i_3=\text {k}\))   [rad]

\(F_0\) :

Force constant in the coupling coefficient identification   [N]

\(F_x\) :

Horizontal force measured by the force sensor   [N]

g :

Gravitational acceleration[\(\text {m s}^{-2}\)]

H :

Wearer’s height    [m]

\(h_\text {c}\) :

Health condition

\(i_1\) :

Index of human (\(i_1=\text {h}\)) and robot (\(i_1=\text {r}\))

\(i_2\) :

Index of thigh (\(i_2=\text {t}\)) and shank (\(i_2=\text {s}\))

\(i_3\) :

Index of hip (\(i_3=\text {h}\)) and knee (\(i_3=\text {k}\))

\(I_{i_1,i_2}\) :

Moment of inertia: human (\(i_1=\text {h}\)) or robot (\(i_1=\text {r}\)); thigh (\(i_2=\text {t}\)) or shank (\(i_2=\text {s}\))   [\(\text {kg m}^2\)]

\(k_\text {d}\) :

Derivative feedback gain in robot control   [\(\text {N m s rad}^{-1}\)]

\(k_{i_2}\) :

Coupling stiffness: thigh (\(i_2=\text {t}\)) or shank (\(i_2=\text {s}\))   [\(\text {N m}^{-1}\)]

\(k_\text {p}\) :

Proportional feedback gain in robot control   [\(\text {N m rad}^{-1}\)]

\(l_{i_1,i_2}\) :

Length: human (\(i_1=\text {h}\)) or robot (\(i_1=\text {r}\)); thigh (\(i_2=\text {t}\)) or shank (\(i_2=\text {s}\))   [m]

\(m_{i_1,i_2}\) :

Mass: human (\(i_1=\text {h}\)) or robot (\(i_1=\text {r}\)); thigh (\(i_2=\text {t}\)) or shank (\(i_2=\text {s}\))   [kg]

M :

Wearer’s body mass    [kg]

\(\overline{P}_{\text {h},i_3}^\text {a}\) :

Time-averaged human active joint power: hip (\(i_3=\text {h}\)) or knee (\(i_3=\text {k}\))   [W]

\(\overline{P}_{\text {r},i_3}^\text {c}\) :

Time-averaged robot’s controlling joint power: hip (\(i_3=\text {h}\)) or knee (\(i_3=\text {k}\))   [W]

\(r_{i_2}\) :

Coupling tightness: thigh (\(i_2=\text {t}\)) or shank (\(i_2=\text {s}\))

\(r_\text {m}\) :

Mass ratio

\(s_{i_1,i_2}\) :

Distance from segment proximal end to coupling point: human (\(i_1=\text {h}\)) or robot (\(i_1=\text {r}\)); thigh (\(i_2=\text {t}\)) or shank (\(i_2=\text {s}\))   [m]

t :

Time   [s]

T:

Swing period   [s]

References

  1. He, W., Goodkind, D., Kowal, P.: An Aging World: 2015 International Population Reports. U.S. Census Bureau, Washington, DC (2016)

    Google Scholar 

  2. WHO, World report on disability, World Health Organization, Geneva, (2011)

  3. Satariano, W.A., Guralnik, J.M., Jackson, R.J., Marottoli, R.A., Phelan, E.A., Prohaska, T.R.: Mobility and aging: new directions for public health action. Am. J. Public Health 102(8), 1508–1515 (2012). https://doi.org/10.2105/AJPH.2011.300631

    Article  Google Scholar 

  4. Luan, X., Tian, X., Zhang, H., Huang, R., Li, N., Chen, P., Wang, R.: Exercise as a prescription for patients with various diseases. J. Sport Health Sci. 8(5), 422–441 (2019). https://doi.org/10.1016/j.jshs.2019.04.002

    Article  Google Scholar 

  5. Aliman, N., Ramli, R., Haris, S.M.: Design and development of lower limb exoskeletons: a survey. Robot. Auton. Syst. 95, 102–116 (2017). https://doi.org/10.1016/j.robot.2017.05.013

    Article  Google Scholar 

  6. Bao, G., Pan, L., Fang, H., Wu, X., Yu, H., Cai, S., Yu, B., Wan, Y.: Academic review and perspectives on robotic exoskeletons. IEEE Trans. Neural Syst. Rehabil. Eng. 27(11), 2294–2304 (2019). https://doi.org/10.1109/TNSRE.2019.2944655

    Article  Google Scholar 

  7. Yan, T., Cempini, M., Oddo, C.M., Vitiello, N.: Review of assistive strategies in powered lower-limb orthoses and exoskeletons. Robot. Auton. Syst. 64, 120–136 (2015). https://doi.org/10.1016/j.robot.2014.09.032

    Article  Google Scholar 

  8. Zoss, A.B., Kazerooni, H., Chu, A.: Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX). IEEE/ASME Trans. Mechatron. 11(2), 128–138 (2006). https://doi.org/10.1109/TMECH.2006.871087

    Article  Google Scholar 

  9. Gregorczyk, K.N., Hasselquist, L., Schiffman, J.M., Bensel, C.K., Obusek, J.P., Gutekunst, D.J.: Effects of a lower-body exoskeleton device on metabolic cost and gait biomechanics during load carriage. Ergonomics 53(10), 1263–1275 (2010). https://doi.org/10.1080/00140139.2010.512982

    Article  Google Scholar 

  10. Koopman, B., Van Asseldonk, E.H.F., Van Der Kooij, H.: Estimation of human hip and knee multi-ioint dynamics using the LOPES gait trainer. IEEE Trans. Rob. 32(4), 920–932 (2016). https://doi.org/10.1109/TRO.2016.2572695

    Article  Google Scholar 

  11. Hidayah, R., Bishop, L., Jin, X., Chamarthy, S., Stein, J., Agrawal, S.K.: Gait adaptation using a cable-driven active leg exoskeleton (c-alex) with post-stroke participants. IEEE Trans. Neural Syst. Rehabil. Eng. 28(9), 1984–1993 (2020). https://doi.org/10.1109/TNSRE.2020.3009317

    Article  Google Scholar 

  12. Asselin, P., Cirnigliaro, C.M., Kornfeld, S., Knezevic, S., Lackow, R., Elliott, M., Bauman, W.A., Spungen, A.M.: Effect of exoskeletal-assisted walking on soft tissue body composition in persons with spinal cord injury. Arch. Phys. Med. Rehabil. 102(2), 196–202 (2021). https://doi.org/10.1016/j.apmr.2020.07.018

    Article  Google Scholar 

  13. Miura, K., Koda, M., Tamaki, K., Ishida, M., Marushima, A., Funayama, T., Takahashi, H., Noguchi, H., Mataki, K., Yasunaga, Y., Kawamoto, H., Sankai, Y., Matsumura, A., Yamazaki, M.: Exercise training using hybrid assistive limb (HAL) lumbar type for locomotive syndrome: a pilot study. BMC Musculoskelet. Disord. 22(1), 533 (2021). https://doi.org/10.1186/s12891-021-04421-3

    Article  Google Scholar 

  14. Oh, S., Baek, E., Song, S.-K., Mohammed, S., Jeon, D., Kong, K.: A generalized control framework of assistive controllers and its application to lower limb exoskeletons. Robot. Auton. Syst. 73, 68–77 (2015). https://doi.org/10.1016/j.robot.2014.10.001

    Article  Google Scholar 

  15. Cao, J., Xie, S.Q., Das, R.: MIMO sliding mode controller for gait exoskeleton driven by pneumatic muscles. IEEE Trans. Control Syst. Technol. 26(1), 274–281 (2018). https://doi.org/10.1109/TCST.2017.2654424

    Article  Google Scholar 

  16. Meng, W., Liu, Q., Zhou, Z., Ai, Q., Sheng, B., Xie, S.S.: Recent development of mechanisms and control strategies for robot-assisted lower limb rehabilitation. Mechatronics 31, 132–145 (2015). https://doi.org/10.1016/j.mechatronics.2015.04.005

    Article  Google Scholar 

  17. Amiri, M.S., Ramli, R., Ibrahim, M.F.: Hybrid design of PID controller for four dof lower limb exoskeleton. Appl. Math. Model. 72, 17–27 (2019). https://doi.org/10.1016/j.apm.2019.03.002

    Article  MathSciNet  Google Scholar 

  18. Zhang, J., Zhang, S., Xu, J.: Human-machine coupled dynamic modelling and control of lower limb exoskeleton for rehabilitation. J. Dyn. Control 19(04), 55–63 (2021). https://doi.org/10.6052/1672-6553-2020-091

    Article  Google Scholar 

  19. Jabbari Asl, H., Narikiyo, T., Kawanishi, T.: Adaptive neural network-based saturated control of robotic exoskeletons. Nonlinear Dyn. 94(1), 123–139 (2018). https://doi.org/10.1007/s11071-018-4348-1

    Article  MATH  Google Scholar 

  20. Wang, D., Wu, J., Deng, L., Li, Z., Wang, Y.: A real-time optimization control method for coagulation process during drinking water treatment. Nonlinear Dyn. 105(4), 3271–3283 (2021). https://doi.org/10.1007/s11071-021-06794-5

    Article  Google Scholar 

  21. Collins, S.H., Wiggin, M.B., Sawicki, G.S.: Reducing the energy cost of human walking using an unpowered exoskeleton. Nature 522, 212–215 (2015)

    Article  Google Scholar 

  22. Zhang, J., Fiers, P., Witte, K.A., Jackson, R.W., Poggensee, K.L., Atkeson, C.G., Collins, S.H.: Human-in-the-loop optimization of exoskeleton assistance during walking. Science 356(6344), 1280 (2017). https://doi.org/10.1126/science.aal5054

    Article  Google Scholar 

  23. Alemi, M.M., Geissinger, J., Simon, A.A., Chang, S.E., Asbeck, A.T.: A passive exoskeleton reduces peak and mean emg during symmetric and asymmetric lifting. J. Electromyogr. Kinesiol. 47, 25–34 (2019). https://doi.org/10.1016/j.jelekin.2019.05.003

    Article  Google Scholar 

  24. Young, A.J., Ferris, D.P.: State of the art and future directions for lower limb robotic exoskeletons. IEEE Trans. Neural Syst. Rehabil. Eng. 25(2), 171–182 (2017). https://doi.org/10.1109/TNSRE.2016.2521160

    Article  Google Scholar 

  25. Duong, M.K., Cheng, H., Huu, T.T., Qiu, J.: Minimizing human-exoskeleton interaction force by using global fast sliding mode control. Int. J. Control Autom. Syst. 14(4), 1064–1073 (2016). https://doi.org/10.1007/s12555-014-0395-7

    Article  Google Scholar 

  26. De Rossi, S.M.M., Vitiello, N., Lenzi, T., Ronsse, R., Koopman, B., Persichetti, A., Vecchi, F., Ijspeert, A.J., Van der Kooij, H., Carrozza, M. C.: Sensing pressure distribution on a lower-limb exoskeleton physical human-machine interface, Sensors 11(1). https://doi.org/10.3390/s110100207

  27. Zhang, C., Zang, X., Leng, Z., Yu, H., Zhao, J., Zhu, Y.: Human-machine force interaction design and control for the hit load-carrying exoskeleton. Adv. Mech. Eng. 8(4), 1687814016645068 (2016). https://doi.org/10.1177/1687814016645068

    Article  Google Scholar 

  28. Huo, W., Mohammed, S., Amirat, Y.: Impedance reduction control of a knee joint human-exoskeleton system. IEEE Trans. Control Syst. Technol. 27(6), 2541–2556 (2019). https://doi.org/10.1109/TCST.2018.2865768

    Article  Google Scholar 

  29. Li, Z., Huang, B., Ye, Z., Deng, M., Yang, C.: Physical human-robot interaction of a robotic exoskeleton by admittance control. IEEE Trans. Industr. Electron. 65(12), 9614–9624 (2018). https://doi.org/10.1109/TIE.2018.2821649

    Article  Google Scholar 

  30. Huang, R., Cheng, H., Qiu, J., Zhang, J.: Learning physical human-robot interaction with coupled cooperative primitives for a lower exoskeleton. IEEE Trans. Autom. Sci. Eng. 16(4), 1566–1574 (2019). https://doi.org/10.1109/TASE.2018.2886376

    Article  Google Scholar 

  31. Mokhtari, M., Taghizadeh, M., Mazare, M.: Impedance control based on optimal adaptive high order super twisting sliding mode for a 7-DoF lower limb exoskeleton. Meccanica 56(3), 535–548 (2021). https://doi.org/10.1007/s11012-021-01308-4

    Article  MathSciNet  Google Scholar 

  32. Xie, Q., Meng, Q., Zeng, Q., Fan, Y., Dai, Y., Yu, H.: Human-exoskeleton coupling dynamics of a multi-mode therapeutic exoskeleton for upper limb rehabilitation training. IEEE Access 9, 61998–62007 (2021). https://doi.org/10.1109/ACCESS.2021.3072781

    Article  Google Scholar 

  33. Li, Z., Deng, C., Zhao, K.: Human-cooperative control of a wearable walking exoskeleton for enhancing climbing stair activities. IEEE Trans. Industr. Electron. 67(4), 3086–3095 (2020). https://doi.org/10.1109/TIE.2019.2914573

    Article  Google Scholar 

  34. Zhu, Y., Cui, J., Zhao, J.: Biomimetic design and biomechanical simulation of a 15-dof lower extremity exoskeleton, In 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2013, pp. 1119–1124

  35. Shi, D., Zhang, W., Zhang, W., Ju, L., Ding, X.: Human-centred adaptive control of lower limb rehabilitation robot based on human-robot interaction dynamic model. Mech. Mach. Theory 162, 104340 (2021). https://doi.org/10.1016/j.mechmachtheory.2021.104340

    Article  Google Scholar 

  36. Stoltze, J.S., Pallari, J., Eskandari, B., Oliveira, A. S. C., Pirscoveanu, C. I., Rasmussen, J., Andersen, M. S.: Development and functional testing of an unloading concept for knee osteoarthritis patients: a pilot study, Journal of Biomechanical Engineering 144(1). https://doi.org/10.1115/1.4051847

  37. Silva, P.C., Silva, M.T., Martins, J.M.: Evaluation of the contact forces developed in the lower limb/orthosis interface for comfort design. Multibody Sys.Dyn. 24(3), 367–388 (2010). https://doi.org/10.1007/s11044-010-9219-6

    Article  MATH  Google Scholar 

  38. Serrancolí, G., Falisse, A., Dembia, C., Vantilt, J., Tanghe, K., Lefeber, D., Jonkers, I., De Schutter, J., De Groote, F.: Subject-exoskeleton contact model calibration leads to accurate interaction force predictions. IEEE Trans. Neural Syst. Rehabil. Eng. 27(8), 1597–1605 (2019). https://doi.org/10.1109/TNSRE.2019.2924536

    Article  Google Scholar 

  39. Mouzo, F., Michaud, F., Lugris, U., Cuadrado, J.: Leg-orthosis contact force estimation from gait analysis. Mech. Mach. Theory 148, 103800 (2020). https://doi.org/10.1016/j.mechmachtheory.2020.103800

    Article  Google Scholar 

  40. Lynch, K.M., Park, F.C.: Modern Robotics: Mechanics, Planning, and Control. Cambridge University Press, Cambridge (2017)

    Google Scholar 

  41. Pámies-Vilá, R., Pätkau, O., Dória-Cerezo, A., Font-Llagunes, J.M.: Influence of the controller design on the accuracy of a forward dynamic simulation of human gait. Mech. Mach. Theory 107, 123–138 (2017). https://doi.org/10.1016/j.mechmachtheory.2016.09.002

    Article  Google Scholar 

  42. Dean, J.C., Kuo, A.D., Alexander, N.B.: Age-related changes in maximal hip strength and movement speed. J. Gerontol.: Ser. A 59(3), 286–292 (2004). https://doi.org/10.1093/gerona/59.3.M286

    Article  Google Scholar 

  43. Laforest, S., St-Pierre, D.M.M., Cyr, J., Gayton, D.: Effects of age and regular exercise on muscle strength and endurance. Eur. J. Appl. Physiol. 60(2), 104–111 (1990). https://doi.org/10.1007/BF00846029

  44. Chen, Z., Xiong, H., Wang, X., Guo, Q., Shi, Y., Yan, Y., Liu, G., Jiang, D.: Model identification of 2-DoF lower limb exoskeleton with neighborhood field optimization. IFAC-PapersOnLine 53(2), 8704–8709 (2020). https://doi.org/10.1016/j.ifacol.2020.12.284

    Article  Google Scholar 

  45. Chen, Z., Guo, Q., Yan, Y., Shi, Y.: Model identification and adaptive control of lower limb exoskeleton based on neighborhood field optimization. Mechatronics 81, 102699 (2022). https://doi.org/10.1016/j.mechatronics.2021.102699

    Article  Google Scholar 

  46. Winter, D.A.: Biomechanics and Motor Control of Human Movement. John Wiley & Sons Inc, New Jersey (2009)

    Book  Google Scholar 

  47. Kapandji, A.I.: The Physiology of the Joints. Churchill Livingstone, Edinburgh (2011)

    Google Scholar 

  48. Hansen, E.A., Kristensen, L.A.R., Nielsen, A.M., Voigt, M., Madeleine, P.: The role of stride frequency for walk-to-run transition in humans. Sci. Rep. 7(1), 2010 (2017). https://doi.org/10.1038/s41598-017-01972-1

    Article  Google Scholar 

  49. Näf, M. B., Junius, K., Rossini, M., Rodriguez-Guerrero, C., Vanderborght, B., Lefeber, D.: Misalignment compensation for full human-exoskeleton kinematic compatibility: state of the art and evaluation, Applied Mechanics Reviews 70(5). https://doi.org/10.1115/1.4042523

  50. Valiant, G. A.: A determination of the mechanical characteristics of the human heel pad in vivo, Ph.D. thesis, The Pennsylvania State University (1984)

Download references

Acknowledgements

This research is supported by National Natural Science Foundation of China (Grants No. 12072068, 11932015, 52175046, and 11872147), and Sichuan Science and Technology Program (Grant No. 2022JDRC0018). The authors thank Mr. Gan Liu and Mr. Li Chen for operating the exoskeleton and data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.

Data availability

The numerical and experimental data sets generated and analysed during the current study are available from the corresponding author on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Y., Chen, Z., Huang, C. et al. Modelling and analysis of coupling dynamics of swinging a lower limb exoskeleton. Nonlinear Dyn 111, 1213–1234 (2023). https://doi.org/10.1007/s11071-022-07876-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07876-8

Keywords

Navigation