Skip to main content
Log in

Turing instability and Hopf bifurcation of a spatially discretized diffusive Brusselator model with zero-flux boundary conditions

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In the present paper, a spatially discretized diffusive Brusselator model with zero-flux boundary conditions is considered. Firstly, the global existence and uniqueness of the positive solution are proved. Then the local stability of the unique spatially homogeneous steady state is considered by analyzing the relevant eigenvalue problem with the aid of decoupling method. Hence, the occurrence conditions of Turing bifurcation and Hopf bifurcation for the model at this steady state are obtained. Meanwhile, the comparative simulations on the stability regions of the steady state between the spatially discretized diffusive Brusselator model and its counterpart in continuous space are given. Furthermore, the approximate expressions of the bifurcating periodic solutions are derived according to Hopf bifurcation theorem. The bifurcating spatially nonhomogeneous periodic solutions show the formation of a special kind of periodic structures for this model. Finally, numerical simulations are given to demonstrate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Not applicable. No datasets were generated or analyzed during the study.

References

  1. Lefever, R.: The rehabilitation of irreversible processes and dissipative structures’ 50th anniversary. Phil. Trans. R. Soc. A. 376, 20170365-1-15 (2018)

  2. Kostet, B., Tlidi, M., Tabbert, F., Frohoff-Hülsmann, T., Gurevich, S.V., Averlant, E., Rojas, R., Sonnino, G., Panajotov, K.: Stationary localized structures and the effect of the delayed feedback in the Brusselator model. Phil. Trans. R. Soc. A. 376, 20170385-1-18 (2018)

  3. Tlidi, M. , Gandica, Y., Sonnino, G., Averlant, E., Panajotov,K.: Self-replicating spots in the Brusselator model and extreme events in the one-dimensional case with delay. Entropy, 64, e18030064-1-10 (2016)

  4. Epstein, I.R., Pojman, J.A., Steinbock, O.: Introduction: Self-organization in nonequilibrium chemical systems. Chaos, 16, 037101-1-7 (2006)

  5. Prigogine, I., Lefever, R.: Symmetry breaking instabilities in dissipative systems II. J. Chem. Phys. 48, 1695–1700 (1968)

    Article  Google Scholar 

  6. You, Y.C., Zhou, S.F.: Global dissipative dynamics of the extended Brusselator system. Nonlinear Anal. RWA. 13, 2767–2789 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Anguelov, R., Stoltz, S.M.: Stationary and oscillatory patterns in a coupled Brusselator model. Math. Comput. Simulat. 133, 39–46 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Erneux, T., Reiss, E.L.: Brusselator isolas. SIAM J. Appl. Math. 43(6), 1240–1246 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brown, K.J., Davidson, F.A.: Global bifurcation in the Brusselator system. Nonlinear Anal. TMA. 24(12), 1713–1725 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Peng, R., Wang, M.X.: Pattern formation in the Brusselator system. J. Math. Anal. Appl. 309, 151–166 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Peng, R., Yang, M.: On steady-state solutions of the Brusselator-type system. Nonlinear Anal. RWA. 71, 1389–1394 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zuo, W.J., Wei, J.J.: Multiple bifurcations and spatiotemporal patterns for a coupled two-cell Brusselator model. Dyn. Partial Differ. Eqs. 8(4), 363–384 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Jia, Y.F., Li, Y., Wu, J.H.: Coexistence of activator and inhibitor for Brusselator diffusion system in chemical or biochemical reactions. Appl. Math. Lett. 53, 33–38 (2016)

  14. Ma, M.J., Hu, J.J.: Bifurcation and stability analysis of steady states to a Brusselator model. Appl. Math. Comput. 236, 580–592 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Ghergu, M.: Non-constant steady-state solutions for Brusselator type systems. Nonlinearity 21, 2331–2345 (2008)

  16. Guo, B.L., Han, Y.Q.: Attractor and spatial chaos for the Brusselator in \(\mathbb{R} ^N\). Nonlinear Anal. 70, 3917–3931 (2009)

  17. You, Y.C.: Global dynamics of the Brusselator equations. Dyn. Partial Differ. Eqs. 4(2), 167–196 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ghergu, M., R\(\check{a}\)dulescu, V.: Turing patterns in general reaction-diffusion systems of Brusselator type. Comm. Contemp. Math. 12(4), 661-679 (2010)

  19. Lv, Y.H., Liu, Z.H.: Turing-Hopf bifurcation analysis and normal form of a diffusive Brusselator model with gene expression time delay. Chaos Soliton Fract. 152, 111478 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, Y.: Hopf bifurcations in general systems of Brusselator type. Nonlinear Anal. RWA 28, 32–47 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, B., Wang, M.X.: Diffusion-driven instability and Hopf bifurcation in Brusselator system. Appl. Math. Mech. Engl. Ed. 29(6), 825–832 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Guo, G.H., Wu, J.H., Ren, X.H.: Hopf bifurcation in general Brusselator system with diffusion. Appl. Math. Mech. Engl. Ed. 32(9), 1177–1186 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Guo, G.H., Li, B.F.: Turing instability and Hopf bifurcation for the general Brusselator system. Adv. Mat. Res. 255–260, 2126–2130 (2011)

    Google Scholar 

  24. Nicolis, G.: Introduction to Nonlinear Science. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  25. Hassard, B.D., Kazarinoff, N.D., Wan, Y.H.: Theory and Applications of Hopf Bifurcation. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  26. Tzou, J.C., Ma, Y.P., Bayliss, A., Matkowsky, B.J., Volpert, V.A.: Homoclinic snaking near a codimension-two Turing-Hopf bifurcation point in the Brusselator model. Phys. Rev. E 87, 022908 (2013)

    Article  Google Scholar 

  27. Yan, X.P., Zhang, P., Zhang, C.H.: Turing instability and spatially homogeneous Hopf bifurcation in a diffusive Brusselator system. Nonlinear Anal. Model. 25(4), 638–657 (2020)

  28. Huang, J.H., Lu, G.: Global attractor and its dimension of discretized FitzHugh-Nagumo equations. Acta Math. Sci. 21A(3), 296–302 (2001)

    MathSciNet  MATH  Google Scholar 

  29. Jiang, M.R., Guo, B.L.: Attractors for discretized Ginzburg-Landau-BBM equations. J. Comput. Math. 19(2), 195–204 (2001)

    MathSciNet  MATH  Google Scholar 

  30. Chua, L.O., Yang, L.: Cellular neural networks: theory. IEEE Trans. Circuits Syst. 35(1), 1257–1272 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  31. Goras, L., Chua, L.O., Leenaerts, D.M.W.: Turing patterns in CNNs. I. Once over lightly. IEEE Trans. Circuits Syst. I:Fundam. Theory Appl. 42(10), 602–611 (1995)

    Article  Google Scholar 

  32. Goras, L., Chua, L.O.: Turing patterns in CNNs. II. Equations and behaviors. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 42(10), 612–626 (1995)

    Article  Google Scholar 

  33. Goras, L., Chua, L.O., Pivka, L.: Turing patterns in CNNs. III. Computer simulation results. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 42(10), 627–637 (1995)

    Article  Google Scholar 

  34. Hethcote, H.W.: Qualitative analyses of communicable disease models. Math. Biosci. 28(3–4), 335–356 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, W.D., Zhao, X.Q.: An epidemic system in a patchy environment. Math. Biosci. 190(1), 97–112 (2004)

  36. Gao, D.Z.: How does dispersal affect the infection size. SIAM J. Appl. Math. 80(5), 2144–2169 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  37. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. Ser. B 237, 37–72 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  38. Othmer, H.G., Scriven, L.E.: Instability and dynamic pattern in cellular networks. J. Theor. Biol. 32, 507–537 (1971)

    Article  Google Scholar 

  39. Li, Z.X., Xia, C.Y.: Turing instability and Hopf bifurcation in cellular neural networks. Int. J. Bifur. Chaos 31, 2150143-1-17 (2021)

  40. Golubitsky M., Stewart, I. N.: Hopf bifurcation with dihedral group symmetry: coupled nonlinear oscillators. In: Golubitsky, M., Guckenheimer, J. (eds.) Multiparameter Bifurcation Series, pp. 131–173. Contemporary Mathematics 46, Amer Math. Soc., Providence (1986)

  41. Ni, W.M., Tang, M.X.: Turing patterns in the Lengyel–Epstein system for the CIMA reaction. Trans. Amer. Math. Soc. 357(10), 3953–3969 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  42. Peng, R., Yi, F.Q., Zhao, X.Q.: Spatiotemporal patterns in a reaction-diffusion system with the Degn–Harrison reaction scheme. J. Differ. Equ. 254(6), 2465–2498 (2013)

    Article  MATH  Google Scholar 

  43. Li, S.B., Wu, J.H., Dong, Y.Y.: Turing patterns in a reaction-diffusion model with the Degn–Harrison reaction scheme. J. Differ. Equ. 259(5), 1990–2029 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Yi, F.Q., Wei, J.J., Shi, J.P.: Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system. J. Differ. Equ. 246(5), 1944–1977 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. Jiang, J., Song, Y.L.: Bifurcation analysis and spatiotemporal patterns of nonlinear oscillations in a ring lattice of identical neurons with delayed coupling. Abstr. Appl. Anal. 2014, 368652 (2014)

    MathSciNet  MATH  Google Scholar 

  46. Song, Y.L., Yang, R., Sun, G.Q.: Pattern dynamics in a Gierer–Meinhardt model with a saturating term. Appl. Math. Model. 46, 476–491 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  47. Shi, Q.Y., Shi, J.P., Song, Y.L.: Hopf bifurcation in a reaction-diffusion equation with distributed delay and Dirichlet boundary condition. J. Differ. Equ. 263(10), 6537–6575 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  48. Song, Y.L., Jiang, H.P., Liu, Q.X., Yuan, Y.: Spatiotemporal dynamics of the diffusive Mussel-Algae model near Turing-Hopf bifurcation. SIAM J. Appl. Dyn. Syst. 16(4), 2030–2062 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  49. Yan, X.P., Chen, J.Y., Zhang, C.H.: Dynamics analysis of a chemical reaction-diffusion system subject to Degn–Harrison reaction scheme. Nonlinear Anal. RWA. 48, 161–181 (2019)

    Article  MATH  Google Scholar 

  50. Zhou, J.: Bifurcation analysis of a diffusive predator-prey model with ratio-dependent Holling type III functional response. Nonlinear Dyn. 81, 1535–1552 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  51. Hu, G.P., Feng, Z.S: Turing instability and pattern formation in a strongly coupled diffusive predator-prey system, Int. J. Bifur. Chaos 30, 2030020-1-15 (2020)

  52. Nakao, H., Mikhailov, A.S.: Turing patterns in network-organized activator-inhibitor systems. Nature phys. 6, 544–550 (2010)

  53. Petit, J., Asllani, M., Fanelli, D., Lauwens, B., Carletti, T.: Pattern formation in a two-component reaction-diffusion system with delayed processes on a network. Phys. A 462, 230–249 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  54. Liu, C., Chang, L.L., Huang, Y., Wang, Z.: Turing patterns in a predator–prey model on complex networks. Nonlinear Dyn. 99, 3313–3322 (2020)

  55. Zheng, Q.Q., Shen, J.W., Xu, Y.: Turing instability in the reaction-diffusion network. Phys. Rev. E. 102, 062215-1-9 (2020)

  56. Gou, W., Jin, Z.: Understanding the epidemiological patterns in spatial networks. Nonlinear Dyn. 106, 1059–1082 (2021)

  57. Shi, Y.L., Liu, Z.H., Tian, C.R.: Hopf bifurcation in an activator-inhibitor system with network. Appl. Math. Lett. 98, 22–28 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  58. Ji, Y.S., Shen, J.W.: Turing instability of Brusselator in the reaction-diffusion network. Complexity. 2020, 1572743-1-12 (2020)

  59. Yang, M.X., Guo, S.J., Chen, Y.R., Dai, Q.L., Li, H.H., Yang, J.Z.: Chimera states with coherent domains owning different frequencies in a ring of nonlocally coupled Brusselators. Nonlinear Dyn. 104, 2843–2852 (2021)

Download references

Acknowledgements

The authors are grateful to the reviewer’s valuable comments, which led to the improvement of this article.

Funding

This work is partially supported by National Natural Science Foundation of China (Nos.11971143,11601384,12071074) and Tianjin Municipal Education Commission Research Project (No.2018KJ147).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongli Song.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Song, Y. & Wu, C. Turing instability and Hopf bifurcation of a spatially discretized diffusive Brusselator model with zero-flux boundary conditions. Nonlinear Dyn 111, 713–731 (2023). https://doi.org/10.1007/s11071-022-07863-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07863-z

Keywords

Mathematics Subject Classification

Navigation