Skip to main content

Superextreme spiking oscillations and multistability in a memristor-based Hindmarsh–Rose neuron model

Abstract

In this paper, we investigate the occurrence of superextreme spiking (SES) oscillations and multistability behavior in a memristor-based Hindmarsh–Rose neuron model. The presence of SES oscillations has been identified as arising due to the occurrence of an interior crisis. As the membrane current I(t), considered as the control parameter is varied, the system transits from bounded chaotic spiking (BCS) oscillations to SES oscillations. These transitions are captured numerically using geometrical representations like time series plots, phase portraits and inter-spikes interval return maps. The characterization of SES from the BCS oscillations is made using statistical tools such as phase shift analysis and probability density distribution function. The multistability nature has been observed using bifurcation analysis and confirmed by the Lyapunov exponents for two different sets of initial conditions. The numerical simulations are substantiated through real-time hardware experiments realized through a nonlinear circuit constructed using an analog model of the memristor.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952)

    Article  Google Scholar 

  2. Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35(1), 193–213 (1981)

    Article  Google Scholar 

  3. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1(6), 445–466 (1961)

    Article  Google Scholar 

  4. Hindmarsh, J., Rose, R.: A model of the nerve impulse using two first-order differential equations. Nature 296(5853), 162–164 (1982)

    Article  Google Scholar 

  5. Hindmarsh, J. L., Rose, R.: A model of neuronal bursting using three coupled first order differential equations, In: Proceedings of the Royal society of London. Series B. Biological sciences, 221 (1222) (1984) 87–102

  6. Izhikevich, E.M.: Neural excitability, spiking and bursting. Int. J. Bifurcat. Chaos 10(06), 1171–1266 (2000)

    MathSciNet  Article  Google Scholar 

  7. Ryashko, L., Slepukhina, E.: Noise-induced torus bursting in the stochastic hindmarsh-rose neuron model. Phy. Rev. E 96(3), 032212 (2017)

    MathSciNet  Article  Google Scholar 

  8. Bashkirtseva, I., Ryashko, L., Slepukhina, E.: Noise-induced spiking-bursting transition in the neuron model with the blue sky catastrophe. Phy. Rev. E 99(6), 062408 (2019)

    Article  Google Scholar 

  9. Parastesh, F., Rajagopal, K., Karthikeyan, A., Alsaedi, A., Hayat, T., Pham, V.T.: Complex dynamics of a neuron model with discontinuous magnetic induction and exposed to external radiation. Cogn. Neurodyn. 12(6), 607–614 (2018)

    Article  Google Scholar 

  10. Tan, Y., Wang, C.: A simple locally active memristor and its application in HR neurons. Chaos 30(5), 053118 (2020)

    MathSciNet  Article  Google Scholar 

  11. Zhang, S., Zheng, J., Wang, X., Zeng, Z.: Multi-scroll hidden attractor in memristive hr neuron model under electromagnetic radiation and its applications. Chaos 31(1), 011101 (2021)

  12. Bao, B., Hu, A., Bao, H., Xu, Q., Chen, M., Wu, H.: Three-dimensional memristive hindmarsh–rose neuron model with hidden coexisting asymmetric behaviors, Complexity, 2018 (2018)

  13. Wang, Z., Shi, X.: Electric activities of time-delay memristive neuron disturbed by gaussian white noise. Cogn. Neurodyn. 14(1), 115–124 (2020)

    Article  Google Scholar 

  14. Lu, L., Bao, C., Ge, M., Xu, Y., Yang, L., Zhan, X., Jia, Y.: Phase noise-induced coherence resonance in three dimension memristive hindmarsh-rose neuron model. Eur. Phys. J. Spec. Topics 228(10), 2101–2110 (2019)

    Article  Google Scholar 

  15. Yu, Y., Shi, M., Kang, H., Chen, M., Bao, B.: Hidden dynamics in a fractional-order memristive hindmarsh-rose model. Nonlinear Dynam. 100(1), 891–906 (2020)

    Article  Google Scholar 

  16. Kingston, S.L., Thamilmaran, K., Pal, P., Feudel, U., Dana, S.K.: Extreme events in the forced Liénard system. Phy. Rev. E 96(5), 052204 (2017)

    Article  Google Scholar 

  17. Suresh, R., Chandrasekar, V.: Parametric excitation induced extreme events in mems and Liénard oscillator. Chaos 30(8), 083141 (2020)

    MathSciNet  Article  Google Scholar 

  18. Dysthe, K., Krogstad, H.E., Müller, P.: Oceanic rogue waves. Annu. Rev. Fluid Mech. 40, 287–310 (2008)

    MathSciNet  Article  Google Scholar 

  19. Chabchoub, A., Hoffmann, N., Onorato, M., Akhmediev, N.: Super rogue waves: observation of a higher-order breather in water waves. Phy. Rev. X 2(1), 011015 (2012)

    Google Scholar 

  20. Bonatto, C., Endler, A.: Extreme and superextreme events in a loss-modulated CO\(_2\) laser: nonlinear resonance route and precursors. Phy. Rev. E 96(1), 012216 (2017)

    Article  Google Scholar 

  21. Mishra, A., Saha, S., Vigneshwaran, M., Pal, P., Kapitaniak, T., Dana, S.K.: Dragon-king-like extreme events in coupled bursting neurons. Phy. Rev. E 97(6), 062311 (2018)

    Article  Google Scholar 

  22. Mishra, A., Leo Kingston, S., Hens, C., Kapitaniak, T., Feudel, U., Dana, S.K.: Routes to extreme events in dynamical systems: dynamical and statistical characteristics. Chaos 30(6), 063114 (2020)

    MathSciNet  Article  Google Scholar 

  23. Chua, L.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)

    Article  Google Scholar 

  24. Itoh, M., Chua, L.O.: Memristor oscillators. Int. J. Bifurcat. Chaos 18(11), 3183–3206 (2008)

    MathSciNet  MATH  Google Scholar 

  25. Batas, D., Fiedler, H.: A memristor spice implementation and a new approach for magnetic flux-controlled memristor modeling. IEEE Trans. Nanotechnol. 10(2), 250–255 (2010)

    Article  Google Scholar 

  26. Liu, S., Wang, Y., Fardad, M., Varshney, P.K.: A memristor-based optimization framework for artificial intelligence applications. IEEE Circuits Syst. Mag. 18(1), 29–44 (2018)

    Article  Google Scholar 

  27. Mao, J.Y., Zhou, L., Zhu, X., Zhou, Y., Han, S.-T.: Photonic memristor for future computing: a perspective. Adv. Opt. Mater. 7(22), 1900766 (2019)

    Article  Google Scholar 

  28. Chang, J.S.H., Ebong, T., Bhadviya, I., Mazumder, B.B., Lu, P.: Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10(4), 1297–1301 (2010)

    Article  Google Scholar 

  29. Ermentrout, B.: Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students, SIAM, (2002)

  30. Kingston, S.L., Suresh, K., Thamilmaran, K., Kapitaniak, T.: Extreme and critical transition events in the memristor based Liénard system. Eur. Phys. J. Special Topics 229(6), 1033–1044 (2020)

    Article  Google Scholar 

  31. Bhagyaraj, T., Sabarathinam, S., Thamilmaran, K.: Extreme events in a forced BVP oscillator: experimental and numerical studies. Chaos Soliton Fract. 153, 111569 (2021)

  32. Pisarchik, A.N., Feudel, U.: Control of multistability. Phys. Rep. 540(4), 167–218 (2014)

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

S. Dinesh Vijay acknowledges Bharathidasan University for providing University Research Fellowship. K. Thamilmaran Acknowledges DST-PURSE PHASE-II, Govt. of India for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Thamilmaran.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vijay, S.D., Thamilmaran, K. & Ahamed, A.I. Superextreme spiking oscillations and multistability in a memristor-based Hindmarsh–Rose neuron model. Nonlinear Dyn (2022). https://doi.org/10.1007/s11071-022-07850-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11071-022-07850-4

Keywords

  • Hindmarsh–Rose neuron model
  • Memristor
  • Superextreme spikes
  • Multistability
  • Electronic circuit