Skip to main content
Log in

Event-triggered adaptive NNs tracking control of three-phase PWM rectifiers under random disturbances

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper is concerned with the problem of tracking control of three-phase pulsewidth-modulation rectifiers under random disturbances. According to power theory, the effect of random disturbances to three-phase rectifiers is interpreted from the perspective of output voltage or reactive power disturbed by colored noises. Thus, a random model of three-phase pulsewidth-modulation rectifiers in a dq frame is constructed. Then, to deal with the uncertainties of parameters and unknown nonlinear functions, a radial basis function neural networks approach in combination with adaptive technique is applied to design an event-triggered state feedback tracking controller. By using random Lyapunov stable theory, it is proven that the states of the closed-loop system are bounded in probability and the tracking error can be rendered arbitrarily small by adjusting related parameters appropriately. Moreover, the Zeno behavior is excluded. Finally, simulation results are proposed to verify the validity of the proposed control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

No data were used to support this study.

References

  1. Wai, R., Yang, Y.: Design of back stepping direct power control for three-phase PWM rectifier. IEEE Trans. Ind. Appl. 55(3), 3160–3173 (2019)

    Article  Google Scholar 

  2. Portillo, R., Vazquez, S., Leon, J.I., Prats, M.M., Franquelo, L.G.: Model based adaptive direct power control for three-level NPC converters. IEEE Trans. Ind. Inf. 9(2), 1148–1157 (2013)

    Article  Google Scholar 

  3. Liu, J., Yin, Y., Luo, W., Vazquez, S., Franquelo, L.G., Wu, L.: Sliding mode control of a three-phase AC/DC voltage source converter under unknown load conditions: industry applications. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 48(10), 1771–1780 (2018)

    Article  Google Scholar 

  4. Su, Y., Ge, X., Xie, D., Wang, K.: An active disturbance rejection control-based voltage control strategy of single-phase cascaded H-bridge rectifiers. IEEE Trans. Ind. Appl. 56(5), 5182–5193 (2020)

    Article  Google Scholar 

  5. Sun, L., Zheng, Z.: Nonlinear adaptive trajectory tracking control for a stratospheric airship with parametric uncertainty. Nonlinear Dyn. 82(3), 1419–1430 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Shi, K., Wang, J., Zhong, S.: Non-fragile memory filtering of TS fuzzy delayed neural networks based on switched fuzzy sampled-data control. Fuzzy Sets Syst. 394, 40–64 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  7. Wang, Y., Zhu, B., Zhang, H.: Functional observer-based finite-time adaptive ISMC for continuous systems with unknown nonlinear function. Automatica 125, 109468 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, Y., Zhang, D., Zhang, W.: MSWR-LRCN: a new deep learning approach to remaining useful life estimation of bearings. Control Eng. Pract. 118, 104969 (2022)

    Article  Google Scholar 

  9. Shen, H., Hu, X., Wang, J., Cao, J., Qian, W.: Non-fragile \(H_{\infty }\) synchronization for Markov jump singularly perturbed coupled neural networks subject to double-layer switching regulation. IEEE Trans. Neural Netw. Learn. Syst. (2021). https://doi.org/10.1109/TNNLS.2021.3107607

    Article  Google Scholar 

  10. Qiu, X., Wang, Y., Zhang, H., Xie, X.: Resilient model free adaptive distributed LFC for multi-area power systems against jamming attacks. IEEE Trans. Neural Netw. Learn. Syst. (2021). https://doi.org/10.1109/TNNLS.2021.3123235

    Article  Google Scholar 

  11. Liu, S., Liu, Y., Liang, X., Wang, N.: Uncertainty observation-based adaptive succinct fuzzy-neuro dynamic surface control for trajectory tracking of fully actuated underwater vehicle system with input saturation. Nonlinear Dyn. 98(3), 1683–1699 (2019)

    Article  MATH  Google Scholar 

  12. Mani, P., Rajan, R., Shanmugam, L., Joo, Y.H.: Adaptive fractional fuzzy integral sliding mode control for PMSM model. IEEE Trans. Fuzzy Syst. 27(8), 1674–1686 (2019)

    Article  Google Scholar 

  13. Fu, C., Zhang, G., Zhang, C.: Finite-time adaptive neural backstepping control for three-phase AC/DC converters under uncertain disturbances. In: IPEMC2020-ECCE Asia, pp. 1784–1788 (2020)

  14. Song, J., Fu, C., Zhang, G., Duan, B., Zhang, C.: Backstepping control of high-frequency link matrix rectifier for battery chargers. IEEE Trans. Power Electron. 36(9), 10801–10814 (2021)

    Article  Google Scholar 

  15. Wang, H., Shi, P., Li, H., Zhou, Q.: Adaptive neural tracking control for a class of nonlinear systems with dynamic uncertainties. IEEE Trans. Cybern. 47(10), 3075–3087 (2017)

    Article  Google Scholar 

  16. Wang, N., Joo Er, M.: Self-constructing adaptive robust fuzzy neural tracking control of surface vehicles with uncertainties and unknown disturbances. IEEE Trans. Control Syst. Technol. 23(3), 91–1002 (2015)

    Article  Google Scholar 

  17. Cui, M.Y., Wu, Z.J., Xie, X.J., Shi, P.: Modeling and adaptive tracking for a class of stochastic Lagrangian control systems. Automatica 49(3), 770–779 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cui, M.Y., Wu, Z.J., Xie, X.J.: Output feedback tracking control of stochastic Lagrangian systems and its application. Automatica 50(5), 1424–1433 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cui, M.Y., Wu, Z.J.: Trajectory tracking of flexible joint manipulators actuated by DC-motors under random disturbances. J. Frank. Inst. 356(16), 9330–9343 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jiao, T., Zheng, W.X., Xu, S.: On stability of a class of switched nonlinear systems subject to random disturbances. IEEE Trans. Circuits Syst. Regul. Pap. 63(12), 2278–2289 (2016)

    Article  Google Scholar 

  21. Yao, L., Zhang, W., Xie, X.: Stability analysis of random nonlinear systems with time-varying delay and its application. Automatica 117, 108994 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Feng, L., Zhang, W., Yang, Z., Park, J.: Further stability results for random nonlinear systems with stochastic impulses. J. Frank. Inst. 358(10), 5426–5450 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  23. Labbadi, M., Cherkaoui, M.: Adaptive fractional-order nonsingular fast terminal sliding mode based robust tracking control of quadrotor UAV with gaussian random disturbances and uncertainties. IEEE Trans. Aerosp. Electron. Syst. 57(4), 2265–2277 (2021)

    Article  Google Scholar 

  24. Zhang, H., Liang, Y., Su, H., Liu, C.: Event-driven guaranteed cost control design for nonlinear systems with actuator faults via reinforcement learning algorithm. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 50(11), 4135–4150 (2020)

    Article  Google Scholar 

  25. Wang, W., Long, J., Zhou, J., Huang, J.S., Wen, C.Y.: Adaptive backstepping based consensus tracking of uncertain nonlinear systems with event-triggered communication. Automatica 133, 109841 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chen, Y., Zhang, D., Zhang, H.: Dual-path mixed domain residual threshold networks for bearing fault diagnosis. IEEE Trans. Ind. Electron. (2022). https://doi.org/10.1109/TIE.2022.3144572

    Article  Google Scholar 

  27. Zhang, D., Wang, Q.G., Feng, G.: A survey on attack detection, estimation and control of industrial cyber-physical systems. ISA Trans. 116, 1–16 (2021)

    Article  Google Scholar 

  28. Heemels, W.P.M.H., Donkers, M.C.F., Teel, A.R.: Periodic event-triggered control for linear systems. IEEE Trans. Autom. Control 58(4), 847–861 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Xing, L., Wen, C., Liu, Z., Su, H., Cai, J.: Event-triggered adaptive control for a class of uncertain nonlinear systems. IEEE Trans. Autom. Control 62(4), 2071–2076 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ye, Z., Zhang, D., Wu, Z.G.: A3c-based intelligent event-triggering control of networked nonlinear unmanned marine vehicles subject to hybrid attacks. IEEE Trans. Intell. Transp. Syst. (2021). https://doi.org/10.1109/TITS.2021.3118648

    Article  Google Scholar 

  31. Yang, J., Zhong, Q., Shi, K.: Co-design of observer-based fault detection filter and dynamic event-triggered controller for wind power system under dual alterable DoS attacks. IEEE Trans. Inf. Forensics Secur. 17, 1270–1284 (2022)

    Article  Google Scholar 

  32. Zhong, Q., Yang, J., Shi, K.: Event-triggered \(H_ {\infty }\) load frequency control for multi-area nonlinear power systems based on non-fragile proportional integral control strategy. IEEE Trans. Intell. Transp. Syst. (2021). https://doi.org/10.1109/TITS.2021.3110759

  33. Zhang, R.Y., Wu, L.B., Zhao, N.N., Yan, Y.: Adaptive event-triggered fuzzy tracking control of uncertain stochastic nonlinear systems with unmeasurable states. IEEE Trans. Fuzzy Syst. (2021). https://doi.org/10.1109/TFUZZ.2021.3078112

    Article  Google Scholar 

  34. Heemels, W.P.M.H., Donkers, M.C.F., Teel, A.R.: Periodic event-triggered control for linear systems. IEEE Trans. Autom. Control 58(4), 847–861 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhang, H., Xi, R., Wang, Y., Sun, S., Sun, J.: Event-triggered adaptive tracking control for random systems with coexisting parametric uncertainties and severe nonlinearities. IEEE Trans. Autom. Control. (2021). https://doi.org/10.1109/TAC.2021.3079279

    Article  MATH  Google Scholar 

  36. Kazmierkowski, M.P., Jasinski, M., Wrona, G.: DSP-based control of grid-connected power converters operating under grid distortions. IEEE Trans. Ind. Inf. 7(2), 204–211 (2011)

    Article  Google Scholar 

  37. Fu, C., Zhang, C., Zhang, G., Song, J., Zhang, C., Duan, B.: Disturbance observer-based finite-time control for three-phase AC/DC converter. IEEE Trans. Ind. Electron. (2021). https://doi.org/10.1109/TIE.2021.3088358

    Article  Google Scholar 

  38. Mahmud, M.A., Hossain, M.J., Pota, H.R., Roy, N.K.: Robust nonlinear controller design for three-phase grid-connected photovoltaic systems under structured uncertainties. IEEE Trans. Power Deliv. 29(3), 1221–1230 (2014)

    Article  Google Scholar 

  39. Djeziri, M.A., Merzouki, R., Bouamama, B.O.: Robust monitoring of an electric vehicle with structured and unstructured uncertainties. IEEE Trans. Veh. Technol. 58(9), 4710–4719 (2009)

    Article  Google Scholar 

  40. Girosi, F., Poggio, T.: Networks and the best approximation property. Biol. Cybern. 63(3), 169–176 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  41. Tong, S., Wang, T., Li, Y.: Fuzzy adaptive actuator failure compensation control of uncertain stochastic nonlinear systems with unmodeled dynamics. IEEE Trans. Fuzzy Syst. 22(3), 563–574 (2014)

    Article  Google Scholar 

  42. Wu, Z.J.: Stability criteria of random nonlinear systems and their applications. IEEE Trans. Autom. Control 60(4), 1038–1049 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NSFC of China under Grant 62073200; in part by the Project funded by China Postdoctoral Science Foundation under Grant 2019M652351; in part by the Post-doctoral Innovation Project of Shandong Province; in part by the Youth Innovation Team Development Plan of Colleges and Universities in Shandong Province (Talents Attracting and Cultivating). This work of J.H. Park was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT) (No. 2019R1A5A8080290).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ticao Jiao or Ju H. Park.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Jiao, T., Park, J.H. et al. Event-triggered adaptive NNs tracking control of three-phase PWM rectifiers under random disturbances. Nonlinear Dyn 111, 303–317 (2023). https://doi.org/10.1007/s11071-022-07828-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07828-2

Keywords

Navigation