Skip to main content
Log in

Regulating memristive neuronal dynamical properties via excitatory or inhibitory magnetic field coupling

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The ion exchange in neurons can trigger time-varying magnetic fields. According to the superposition field principle, each neuron is exposed to the integrated magnetic field generated by the other neurons. This paper considers the effect of magnetic field coupling between two neurons on neuron dynamics. The magnetic flux of the memristor describes the impact of the magnetic field. According to the different coupling types of neurons, the excitatory coupling between excitatory neurons. The inhibitory magnetic coupling between excitatory and inhibitory neurons is also considered. And then, the excitatory and inhibitory magnetic field coupling is studied under different external excitation currents. The excitatory magnetic field coupling can promote the firing of neurons. When the intensity of inhibitory magnetic field coupling is large enough, the neuronal firing mode is static. The firing mode of neurons can be changed by adjusting the coupling intensity. Therefore, magnetic field coupling can provide new insights into the mechanism of information interaction between neurons. Finally, the excitability and inhibition of magnetic field coupling are improved by comparing magnetic field coupling with synaptic coupling. These results indicate that magnetic field coupling has the same function as a synapse to some extent and has the characteristics of radiation propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Komendantov, A.O., Venkadesh, S., Rees, C.L., Wheeler, D.W., Hamilton, D.J., Ascoli, G.A.: Quantitative firing pattern phenotyping of hippocampal neuron types. Sci. Rep. 9(1), 1–17 (2019)

    Google Scholar 

  2. Ma, J., Tang, J.: A review for dynamics in neuron and neuronal network. Nonlinear Dyn. 89(3), 1569–1578 (2017)

    MathSciNet  Google Scholar 

  3. Chua, L.: Memristor—the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)

    Google Scholar 

  4. Ma, M., Yang, Y., Qiu, Z., Peng, Y., Sun, Y., Li, Z., Wang, M.: A locally active discrete memristor model and its application in a hyperchaotic map. Nonlinear Dyn. 66, 1–15 (2022)

    Google Scholar 

  5. Ma, X., Mou, J., Xiong, L., Banerjee, S., Cao, Y., Wang, J.: A novel chaotic circuit with coexistence of multiple attractors and state transition based on two memristors. Chaos Solitons Fract. 152, 111363 (2021)

    MathSciNet  MATH  Google Scholar 

  6. Lin, H., Wang, C., Hong, Q., Sun, Y.: A multi-stable memristor and its application in a neural network. IEEE Trans. Circuits Syst. II Express Briefs 67(12), 3472–3476 (2020)

    Google Scholar 

  7. Zhang, S., Zheng, J., Wang, X., Zeng, Z.: A novel no-equilibrium hr neuron model with hidden homogeneous extreme multistability. Chaos Solitons Fract. 145, 110761 (2021)

    MathSciNet  MATH  Google Scholar 

  8. Varshney, V., Sabarathinam, S., Prasad, A., Thamilmaran, K.: Infinite number of hidden attractors in memristor-based autonomous duffing oscillator. Int. J. Bifurc. Chaos 28(01), 1850013 (2018)

    MathSciNet  MATH  Google Scholar 

  9. Deng, Q., Wang, C., Yang, L.: Four-wing hidden attractors with one stable equilibrium point. Int. J. Bifurc. Chaos 30(06), 2050086 (2020)

    MathSciNet  MATH  Google Scholar 

  10. Lin, H., Wang, C., Cui, L., Sun, Y., Xu, C., Yu, F.: Brain-like initial-boosted hyperchaos and application in biomedical image encryption. IEEE Trans. Ind. Inform. (2022). https://doi.org/10.1109/TII.2022.3155599

    Article  Google Scholar 

  11. Zhou, L., Wang, C., Zhou, L.: Generating hyperchaotic multi-wing attractor in a 4d memristive circuit. Nonlinear Dyn. 85(4), 2653–2663 (2016)

    Google Scholar 

  12. Zhou, L., Wang, C., Zhou, L.: A novel no-equilibrium hyperchaotic multiwing system via introducing memristor. Int. J. Circuit Theory Appl. 46(1), 84–98 (2018)

    Google Scholar 

  13. Yan, D., Wang, L., Duan, S., Chen, J., Chen, J.: Chaotic attractors generated by a memristor-based chaotic system and Julia fractal. Chaos Solitons Fract. 146, 110773 (2021)

    MathSciNet  Google Scholar 

  14. Lin, H., Wang, C., Yu, F., Xu, C., Hong, Q., Yao, W., Sun, Y.: An extremely simple multiwing chaotic system: Dynamics analysis, encryption application, and hardware implementation. IEEE Trans. Ind. Electron. 68(12), 12708–12719 (2021)

    Google Scholar 

  15. Yu, F., Kong, X., Chen, H., Yu, Q., Cai, S., Huang, Y., Du, S.: A 6d fractional-order memristive Hopfield neural network and its application in image encryption. Front. Phys. 109, 66 (2022)

    Google Scholar 

  16. Yang, Y., Wang, L., Duan, S., Luo, L.: Dynamical analysis and image encryption application of a novel memristive hyperchaotic system. Opt. Laser Technol. 133, 106553 (2021)

    Google Scholar 

  17. Lin, H., Wang, C., Chen, C., Sun, Y., Zhou, C., Xu, C., Hong, Q.: Neural bursting and synchronization emulated by neural networks and circuits. IEEE Trans. Circuits Syst. I Regul. Pap. 68(8), 3397–3410 (2021)

    Google Scholar 

  18. Xu, C., Wang, C., Jiang, J., Sun, J., Lin, H.: Memristive circuit implementation of context-dependent emotional learning network and its application in multi-task. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 66, 1 (2021)

    Google Scholar 

  19. Yang, L., Wang, C.: Emotion model of associative memory possessing variable learning rates with time delay. Neurocomputing 460, 117–125 (2021)

    Google Scholar 

  20. Lin, H., Wang, C., Deng, Q., Xu, C., Deng, Z., Zhou, C.: Review on chaotic dynamics of memristive neuron and neural network. Nonlinear Dyn. 106(1), 959–973 (2021)

    Google Scholar 

  21. Xie, W., Wang, C., Lin, H.: A fractional-order multistable locally active memristor and its chaotic system with transient transition, state jump. Nonlinear Dyn. 104(4), 4523–4541 (2021)

    Google Scholar 

  22. Chen, J., Li, C., Huang, T., Yang, X.: Global stabilization of memristor-based fractional-order neural networks with delay via outputfeedback control. Mod. Phys. Lett. B 31(05), 1750031 (2017)

    Google Scholar 

  23. Jahanshahi, H., Yousefpour, A., Munoz-Pacheco, J.M., Kacar, S., Pham, V.-T., Alsaadi, F.E.: A new fractional-order hyperchaotic memristor oscillator: Dynamic analysis, robust adaptive synchronization, and its application to voice encryption. Appl. Math. Comput. 383, 125310 (2020)

    MathSciNet  MATH  Google Scholar 

  24. Lin, H., Wang, C., Sun, Y., Yao, W.: Firing multistability in a locally active memristive neuron model. Nonlinear Dyn. 100(4), 3667–3683 (2020)

    Google Scholar 

  25. Li, C., Li, H., Xie, W., Du, J.: A s-type bistable locally active memristor model and its analog implementation in an oscillator circuit. Nonlinear Dyn. 106(1), 1041–1058 (2021)

    Google Scholar 

  26. Dong, Y., Wang, G., Iu, H.H.-C., Chen, G., Chen, L.: Coexisting hidden and self-excited attractors in a locally active memristor-based circuit. Chaos Interdiscip. J. Nonlinear Sci. 30(10), 103123 (2020)

    MathSciNet  MATH  Google Scholar 

  27. Lv, M., Wang, C., Ren, G., Ma, J., Song, X.: Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn. 85(3), 1479–1490 (2016)

    Google Scholar 

  28. Lv, M., Ma, J.: Multiple modes of electrical activities in a new neuron model under electromagnetic radiation. Neurocomputing 205, 375–381 (2016)

    Google Scholar 

  29. Bao, H., Liu, W., Chen, M.: Hidden extreme multistability and dimensionality reduction analysis for an improved non-autonomous memristive Fitzhugh–Nagumo circuit. Nonlinear Dyn. 96(3), 1879–1894 (2019)

    MATH  Google Scholar 

  30. Bao, H., Hu, A., Liu, W., Bao, B.: Hidden bursting firings and bifurcation mechanisms in memristive neuron model with threshold electromagnetic induction. IEEE Trans. Neural Netw. Learn. Syst. 31(2), 502–511 (2019)

    Google Scholar 

  31. Ma, J., Zhang, G., Hayat, T., Ren, G.: Model electrical activity of neuron under electric field. Nonlinear Dyn. 95(2), 1585–1598 (2019)

    Google Scholar 

  32. Yan, B., Panahi, S., He, S., Jafari, S.: Further dynamical analysis of modified Fitzhugh–Nagumo model under the electric field. Nonlinear Dyn. 101(1), 521–529 (2020)

    Google Scholar 

  33. Wu, F., Ma, J., Zhang, G.: A new neuron model under electromagnetic field. Appl. Math. Comput. 347, 590–599 (2019)

    MathSciNet  MATH  Google Scholar 

  34. Lu, L., Jia, Y., Xu, Y., Ge, M., Yang, L., Zhan, X.: Energy dependence on modes of electric activities of neuron driven by different external mixed signals under electromagnetic induction. Sci. China Technol. Sci. 62(3), 427–440 (2019)

    Google Scholar 

  35. Hindmarsh, J., Rose, R.: A model of the nerve impulse using two first-order differential equations. Nature 296(5853), 162–164 (1982)

    Google Scholar 

  36. Gambuzza, L.V., Di Patti, F., Gallo, L., Lepri, S., Romance, M., Criado, R., Frasca, M., Latora, V., Boccaletti, S.: Stability of synchronization in simplicial complexes. Nat. Commun. 12(1), 1–13 (2021)

    Google Scholar 

  37. Wang, G., Xu, Y., Ge, M., Lu, L., Jia, Y.: Mode transition and energy dependence of Fitzhugh–Nagumo neural model driven by high-low frequency electromagnetic radiation. AEU Int. J. Electron. Commun. 120, 153209 (2020)

    Google Scholar 

  38. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1(6), 445–466 (1961)

    Google Scholar 

  39. Yang, Y., Ma, J., Xu, Y., Jia, Y.: Energy dependence on discharge mode of Izhikevich neuron driven by external stimulus under electromagnetic induction. Cognit. Neurodyn. 15(2), 265–277 (2021)

    Google Scholar 

  40. Izhikevich, E.: Simple model of spiking neurons. IEEE Trans. Neural Netw. 14(6), 1569–1572 (2003)

    MathSciNet  Google Scholar 

  41. Wan, Q., Yan, Z., Li, F., Liu, J., Chen, S.: Multistable dynamics in a Hopfield neural network under electromagnetic radiation and dual bias currents. Nonlinear Dyn. 66, 1–17 (2022)

    Google Scholar 

  42. Wan, Q., Yan, Z., Li, F., Chen, S., Liu, J.: Complex dynamics in a Hopfield neural network under electromagnetic induction and electromagnetic radiation. Chaos Interdiscip. J. Nonlinear Sci. 32(7), 073107 (2022)

    MathSciNet  Google Scholar 

  43. Lin, H., Wang, C.: Influences of electromagnetic radiation distribution on chaotic dynamics of a neural network. Appl. Math. Comput. 369, 124840 (2020)

    MathSciNet  MATH  Google Scholar 

  44. Yu, F., Zhang, Z., Shen, H., Huang, Y., Cai, S., Jin, J., Du, S.: Design and fpga implementation of a pseudo-random number generator based on a Hopfield neural network under electromagnetic radiation. Front. Phys. 9, 302 (2021)

    Google Scholar 

  45. Lin, H., Wang, C., Yao, W., Tan, Y.: Chaotic dynamics in a neural network with different types of external stimuli. Commun. Nonlinear Sci. Numer. Simul. 90, 105390 (2020)

    MathSciNet  MATH  Google Scholar 

  46. Qu, L., Du, L., Hu, H., Cao, Z., Deng, Z.: Pattern control of external electromagnetic stimulation to neuronal networks. Nonlinear Dyn. 102(4), 2739–2757 (2020)

    Google Scholar 

  47. Zandi-Mehran, N., Jafari, S., Hashemi Golpayegani, S.M.R., Nazarimehr, F., Perc, M.: Different synaptic connections evoke different firing patterns in neurons subject to an electromagnetic field. Nonlinear Dyn. 100(2), 1809–1824 (2020)

    Google Scholar 

  48. Alcamí, P., Pereda, A. E.: Beyond plasticity: the dynamic impact of electrical synapses on neural circuits. Nat. Rev. Neurosci. 20(5), 253–271 (2019)

  49. Xu, K., Maidana, J.P., Orio, P.: Diversity of neuronal activity is provided by hybrid synapses. Nonlinear Dyn. 105(3), 2693–2710 (2021)

    Google Scholar 

  50. Li, Y., Gu, H., Jia, B., Ding, X.: The nonlinear mechanism for the same responses of neuronal bursting to opposite self-feedback modulations of autapse. Sci. China Technol. Sci. 64(7), 1459–1471 (2021)

    Google Scholar 

  51. Uzuntarla, M.: Firing dynamics in hybrid coupled populations of bistable neurons. Neurocomputing 367, 328–336 (2019)

    Google Scholar 

  52. Ma, J., Mi, L., Zhou, P., Xu, Y., Hayat, T.: Phase synchronization between two neurons induced by coupling of electromagnetic field. Appl. Math. Comput. 307, 321–28 (2017)

    MathSciNet  MATH  Google Scholar 

  53. Guo, S., Xu, Y., Wang, C., Jin, W., Hobiny, A., Ma, J.: Collective response, synapse coupling and field coupling in neuronal network. Chaos Solitons Fract. 105, 120–127 (2017)

    MathSciNet  Google Scholar 

  54. Zhao, Y., Sun, X., Liu, Y., Kurths, J.: Phase synchronization dynamics of coupled neurons with coupling phase in the electromagnetic field. Nonlinear Dyn. 93(3), 1315–1324 (2018)

    Google Scholar 

  55. Zhou, Q., Wei, D.Q.: Collective dynamics of neuronal network under synapse and field coupling. Nonlinear Dyn. 105(1), 753–765 (2021)

    Google Scholar 

  56. Xu, Y., Jia, Y., Ma, J., Hayat, T., Alsaedi, A.: Collective responses in electrical activities of neurons under field coupling. Sci. Rep. 8(1), 1–10 (2018)

    Google Scholar 

  57. Ozer, M., Uzuntarla, M., Agaoglu, S.N.: Effect of the sub-threshold periodic current forcing on the regularity and the synchronization of neuronal spiking activity. Phys. Lett. A 360(1), 135–140 (2006)

  58. Rakshit, S., Bera, B.K., Ghosh, D., Sinha, S.: Emergence of synchronization and regularity in firing patterns in timevarying neural hypernetworks. Phys. Rev. E 97, 052304 (2018)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 61971185) and Natural Science Foundation of Hunan Province (2020JJ4218).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunhua Wang.

Ethics declarations

Funding

The authors have not disclosed any funding.

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, Z., Wang, C., Deng, Q. et al. Regulating memristive neuronal dynamical properties via excitatory or inhibitory magnetic field coupling. Nonlinear Dyn 110, 3823–3835 (2022). https://doi.org/10.1007/s11071-022-07813-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07813-9

Keywords

Navigation