Skip to main content

Advertisement

Log in

Enhanced model reduction method via combined supervised and unsupervised learning for real-time solution of nonlinear structural dynamics

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

To develop a predictive digital twin for future structural design or maintenance, a real-time solution for structural analysis is essential. However, a large-scale nonlinear structural analysis still requires recursive procedures that incur high computational costs. In this study, we propose a neural-network-based model order reduction method for a given parameter space. It is realized by combining an autoencoder with a deep neural network to efficiently address high-dimensional data. The key aspects of the proposed approach include the integration of projection-based model reduction for data mining and multistep model reduction. Moreover, the combination of two network architectures, which can learn a direct relationship between the parameter and the nonlinear displacement field, was considered. Transfer learning over the time span of interest was performed to broaden the time history prediction of nonlinear structural dynamics. The proposed approach was compared with the full-order model by considering numerical examples of nonlinear structural dynamics to demonstrate its efficiency and accuracy. As a result, the real-time prediction of nonlinear structural dynamics was achieved. Moreover, the proposed approach showed excellent computational efficiency in parameterized nonlinear structural analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig.14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig.21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Chatterjee, A.: An introduction to the proper orthogonal decomposition. Curr. Sci. 78, 808–817 (2000)

    Google Scholar 

  2. Liang, Y.C., Lee, H.P., Lim, S.P., Lin, W.Z., Lee, K.H., Wu, C.G.: Proper orthogonal decomposition and its applications—Part I: Theory. J. Sound Vib. 252, 527–544 (2002)

    Article  MATH  Google Scholar 

  3. Rowley, C.W., Colonius, T., Murray, R.M.: Model reduction for compressible flows using POD and Galerkin projection. Phys. D Nonlinear Phenom. 189, 115–129 (2004). https://doi.org/10.1016/j.physd.2003.03.001

    Article  MathSciNet  MATH  Google Scholar 

  4. Sirovich, L.: Turbulence and the dynamics of coherent structures I. Coherent structures. Q. Appl. Math. 45, 561–571 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. Wang, Z., Akhtar, I., Borggaard, J., Iliescu, T.: Proper orthogonal decomposition closure models for turbulent flows: a numerical comparison. Comput. Methods Appl. Mech. Eng. 237, 10–26 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hijazi, S., Stabile, G., Mola, A., Rozza, G.: Data-driven POD-Galerkin reduced order model for turbulent flows. J. Comput. Phys. 416, 109513 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lieu, T., Farhat, C., Lesoinne, M.: Reduced-order fluid/structure modeling of a complete aircraft configuration. Comput. Methods Appl. Mech. Eng. 195, 5730–5742 (2006)

    Article  MATH  Google Scholar 

  8. Amsallem, D., Cortial, J., Farhat, C.: Towards real-time computational-fluid-dynamics-based aeroelastic computations using a database of reduced-order information. AIAA J. 48, 2029–2037 (2010)

    Article  Google Scholar 

  9. Yvonnet, J., He, Q.-C.: The reduced model multiscale method (R3M) for the non-linear homogenization of hyperelastic media at finite strains. J. Comput. Phys. 223, 341–368 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Xia, L., Breitkopf, P.: A reduced multiscale model for nonlinear structural topology optimization. Comput. Methods Appl. Mech. Eng. 280, 117–134 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kerfriden, P., Goury, O., Rabczuk, T., Bordas, S.P.-A.: A partitioned model order reduction approach to rationalise computational expenses in nonlinear fracture mechanics. Comput. Methods Appl. Mech. Eng. 256, 169–188 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Huang, C., Duraisamy, K., Merkle, C.L.: Investigations and improvement of robustness of reduced-order models of reacting flow. AIAA J. 57, 5377–5389 (2019)

    Article  Google Scholar 

  13. Kerfriden, P., Gosselet, P., Adhikari, S., Bordas, S.P.A.: Bridging proper orthogonal decomposition methods and augmented Newton-Krylov algorithms: an adaptive model order reduction for highly nonlinear mechanical problems. Comput. Methods Appl. Mech. Eng. 200, 850–866 (2011). https://doi.org/10.1016/j.cma.2010.10.009

    Article  MathSciNet  MATH  Google Scholar 

  14. Touzé, C., Vizzaccaro, A., Thomas, O.: Model order reduction methods for geometrically nonlinear structures: a review of nonlinear techniques. Nonlinear Dyn. 105, 1141–1190 (2021). https://doi.org/10.1007/s11071-021-06693-9

    Article  Google Scholar 

  15. Barrault, M., Maday, Y., Nguyen, N.C., Patera, A.T.: An ‘empirical interpolation’method: application to efficient reduced-basis discretization of partial differential equations. Comptes Rendus Math. 339, 667–672 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chaturantabut, S., Sorensen, D.C.: Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput. 32, 2737–2764 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Amsallem, D., Zahr, M., Choi, Y., Farhat, C.: Design optimization using hyper-reduced-order models. Struct. Multidiscip. Optim. 51, 919–940 (2015)

    Article  MathSciNet  Google Scholar 

  18. Alla, A., Kutz, J.N.: Nonlinear model order reduction via dynamic mode decomposition. SIAM J. Sci. Comput. 39, B778–B796 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Peherstorfer, B., Willcox, K.: Dynamic data-driven reduced-order models. Comput. Methods Appl. Mech. Eng. 291, 21–41 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Amsallem, D., Farhat, C.: An online method for interpolating linear parametric reduced-order models. SIAM J. Sci. Comput. 33, 2169–2198 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Peherstorfer, B., Willcox, K.: Online adaptive model reduction for nonlinear systems via low-rank updates. SIAM J. Sci. Comput. 37, A2123–A2150 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Cho, H., Shin, S., Kim, H., Cho, M.: Enhanced model-order reduction approach via online adaptation for parametrized nonlinear structural problems. Comput. Mech. 65, 331–353 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Farhat, C., Chapman, T., Avery, P.: Structure-preserving, stability, and accuracy properties of the energy-conserving sampling and weighting method for the hyper reduction of nonlinear finite element dynamic models. Int. J. Numer. Methods Eng. 102, 1077–1110 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kast, M., Guo, M., Hesthaven, J.S.: A non-intrusive multifidelity method for the reduced order modeling of nonlinear problems. Comput. Methods Appl. Mech. Eng. 364, 112947 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Guo, M., Hesthaven, J.S.: Reduced order modeling for nonlinear structural analysis using Gaussian process regression. Comput. Methods Appl. Mech. Eng. 341, 807–826 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Guo, M., Hesthaven, J.S.: Data-driven reduced order modeling for time-dependent problems. Comput. Methods Appl. Mech. Eng. 345, 75–99 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. San, O., Maulik, R.: Neural network closures for nonlinear model order reduction. Adv. Comput. Math. 44, 1717–1750 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hesthaven, J.S., Ubbiali, S.: Non-intrusive reduced order modeling of nonlinear problems using neural networks. J. Comput. Phys. 363, 55–78 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, Q., Hesthaven, J.S., Ray, D.: Non-intrusive reduced order modeling of unsteady flows using artificial neural networks with application to a combustion problem. J. Comput. Phys. 384, 289–307 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, S., Yang, Y.: Hierarchical deep learning for data-driven identification of reduced-order models of nonlinear dynamical systems. Nonlinear Dyn. 105, 3409–3422 (2021). https://doi.org/10.1007/s11071-021-06772-x

    Article  Google Scholar 

  31. Park, K.H., Jun, S.O., Baek, S.M., Cho, M.H., Yee, K.J., Lee, D.H.: Reduced-order model with an artificial neural network for aerostructural design optimization. J. Aircr. 50, 1106–1116 (2013)

    Article  Google Scholar 

  32. Reddy, S.B., Magee, A.R., Jaiman, R.K., Liu, J., Xu, W., Choudhary, A., Hussain, A.A.: Reduced order model for unsteady fluid flows via recurrent neural networks. In: ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering (2019)

  33. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997)

    Article  Google Scholar 

  34. Wang, Z., Xiao, D., Fang, F., Govindan, R., Pain, C.C., Guo, Y.: Model identification of reduced order fluid dynamics systems using deep learning. Int. J. Numer. Methods Fluids. 86, 255–268 (2018)

    Article  MathSciNet  Google Scholar 

  35. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science (80-.) 313, 504–507 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lee, K., Carlberg, K.T.: Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders. J. Comput. Phys. 404, 108973 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  37. Murata, T., Fukami, K., Fukagata, K.: Nonlinear mode decomposition with convolutional neural networks for fluid dynamics. J. Fluid Mech. 882, (2020)

  38. Xu, J., Duraisamy, K.: Multi-level convolutional autoencoder networks for parametric prediction of spatio-temporal dynamics. Comput. Methods Appl. Mech. Eng. 372, 113379 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  39. Pathirage, C.S.N., Li, J., Li, L., Hao, H., Liu, W., Ni, P.: Structural damage identification based on autoencoder neural networks and deep learning. Eng. Struct. 172, 13–28 (2018)

    Article  Google Scholar 

  40. Lee, S., Jang, K., Cho, H., Kim, H., Shin, S.: Parametric non-intrusive model order reduction for flow-fields using unsupervised machine learning. Comput. Methods Appl. Mech. Eng. 384, 113999 (2021). https://doi.org/10.1016/j.cma.2021.113999

    Article  MathSciNet  MATH  Google Scholar 

  41. Omata, N., Shirayama, S.: A novel method of low-dimensional representation for temporal behavior of flow fields using deep autoencoder. AIP Adv. 9, 15006 (2019). https://doi.org/10.1063/1.5067313

    Article  Google Scholar 

  42. Wu, P., Sun, J., Chang, X., Zhang, W., Arcucci, R., Guo, Y., Pain, C.C.: Data-driven reduced order model with temporal convolutional neural network. Comput. Methods Appl. Mech. Eng. 360, 112766 (2020). https://doi.org/10.1016/j.cma.2019.112766

    Article  MathSciNet  MATH  Google Scholar 

  43. Fresca, S., Dede’, L., Manzoni, A.: A comprehensive deep learning-based approach to reduced order modeling of nonlinear time-dependent parametrized PDEs. J. Sci. Comput. 87, 61 (2021). https://doi.org/10.1007/s10915-021-01462-7

    Article  MathSciNet  MATH  Google Scholar 

  44. Otto, S.E., Rowley, C.W.: Linearly recurrent autoencoder networks for learning dynamics. SIAM J. Appl. Dyn. Syst. 18, 558–593 (2019). https://doi.org/10.1137/18M1177846

    Article  MathSciNet  MATH  Google Scholar 

  45. Pawar, S., Rahman, S.M., Vaddireddy, H., San, O., Rasheed, A., Vedula, P.: A deep learning enabler for nonintrusive reduced order modeling of fluid flows. Phys. Fluids. 31, 85101 (2019). https://doi.org/10.1063/1.5113494

    Article  Google Scholar 

  46. Fresca, S., Manzoni, A.: POD-DL-ROM: enhancing deep learning-based reduced order models for nonlinear parametrized PDEs by proper orthogonal decomposition. Comput. Methods Appl. Mech. Eng. 388, 114181 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  47. Kim, Y., Kim, Y., Yang, C., Park, K., Gu, G.X., Ryu, S.: Deep learning framework for material design space exploration using active transfer learning and data augmentation. npj Comput. Mater. 7, 140 (2021). https://doi.org/10.1038/s41524-021-00609-2

    Article  Google Scholar 

  48. Glorot, X., Bordes, A., Bengio, Y.: Domain adaptation for large-scale sentiment classification: A deep learning approach. In: ICML (2011)

  49. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 580–587 (2014)

  50. Xu, Y., Weng, H., Ju, X., Ruan, H., Chen, J., Nan, C., Guo, J., Liang, L.: A method for predicting mechanical properties of composite microstructure with reduced dataset based on transfer learning. Compos. Struct. 275, 114444 (2021)

    Article  Google Scholar 

  51. Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Comput. Civ. Infrastruct. Eng. 33, 748–768 (2018)

    Article  Google Scholar 

  52. Chen, W., Qiu, Y., Feng, Y., Li, Y., Kusiak, A.: Diagnosis of wind turbine faults with transfer learning algorithms. Renew. Energy. 163, 2053–2067 (2021)

    Article  Google Scholar 

  53. Gavish, M., Donoho, D.L.: The Optimal Hard Threshold for Singular Values is $4/\sqrt {3}$. IEEE Trans. Inf. Theory. 60, 5040–5053 (2014). https://doi.org/10.1109/TIT.2014.2323359

    Article  MathSciNet  MATH  Google Scholar 

  54. Tiso, P., Rixen, D.J.: Discrete empirical interpolation method for finite element structural dynamics BT—topics in nonlinear dynamics, Vol. 1. Presented at the (2013)

  55. Mckay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 42, 55–61 (2000). https://doi.org/10.1080/00401706.2000.10485979

    Article  MATH  Google Scholar 

  56. Stein, M.: Large sample properties of simulations using latin hypercube sampling. Technometrics 29, 143–151 (1987). https://doi.org/10.1080/00401706.1987.10488205

    Article  MathSciNet  MATH  Google Scholar 

  57. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization, (2017)

  58. Kotsiantis, S., Kanellopoulos, D., Pintelas, P.: Data Preprocessing for Supervised Leaning. World Acad. Sci. Eng. Technol. Int. J. Comput. Electr. Autom. Control Inf. Eng. 1, 4104–4109 (2007)

    Google Scholar 

  59. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  60. Géron, A.: Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems. O’Reilly Media (2019)

  61. Clevert, D.-A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUs), (2016)

  62. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22, 1345–1359 (2010). https://doi.org/10.1109/TKDE.2009.191

    Article  Google Scholar 

  63. Felippa, C.A., Haugen, B.: A unified formulation of small-strain corotational finite elements: I. Theory. Comput. Methods Appl. Mech. Eng. 194, 2285–2335 (2005). https://doi.org/10.1016/j.cma.2004.07.035

    Article  MATH  Google Scholar 

  64. Cho, H., Kim, H., Shin, S.: Geometrically nonlinear dynamic formulation for three-dimensional co-rotational solid elements. Comput. Methods Appl. Mech. Eng. 328, 301–320 (2018). https://doi.org/10.1016/j.cma.2017.08.037

    Article  MathSciNet  MATH  Google Scholar 

  65. Karypis, G.: METIS* A Software Package for Partitioning Unstructured Graphs , Partitioning Meshes , and Computing Fill-Reducing Orderings of Sparse Matrices Version 5.1.0, http://glaros.dtc.umn.edu/gkhome/metis/metis/download

  66. Intel Math Kernel Library, http://software.intel.com/en-us/intel-mkl

Download references

Funding

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT; Ministry of Science and ICT) (No. 2020R1C1C1006006 and No. 2021R1F1A1063138).

Author information

Authors and Affiliations

Authors

Contributions

HK was involved in conceptualization, methodology, writing—review and editing. SC contributed to methodology, data curation, writing—review and editing. IJ was involved in methodology and investigation. HC contributed to conceptualization, methodology, supervision, writing—review and editing. HK contributed to supervision, writing—review and editing.

Corresponding authors

Correspondence to Haeseong Cho or Haedong Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Cheon, S., Jeong, I. et al. Enhanced model reduction method via combined supervised and unsupervised learning for real-time solution of nonlinear structural dynamics. Nonlinear Dyn 110, 2165–2195 (2022). https://doi.org/10.1007/s11071-022-07733-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07733-8

Keywords

Navigation