Skip to main content
Log in

Barrier function-based adaptive integral sliding mode finite-time attitude control for rigid spacecraft

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates the problem of attitude tracking control with predefined-time convergence for rigid spacecraft under external disturbances and inertia uncertainties. Firstly, the proposed nominal controller is designed to achieve attitude tracking control of the rigid spacecraft in the absence of disturbances and inertia uncertainties, and the convergence of the spacecraft attitude errors can be selected in advance. Then, the integral sliding mode combined with barrier function-based adaptive laws is proposed to reject the disturbances and inertia uncertainties, and at the same time, a barrier function-based adaptive method can also ensure the solutions of the rigid spacecraft system belonging to a stipulated vicinity of the intended variables starting from the initial moment and the uncertainties’ upper bound is not overestimated. Finally, a numerical simulation is provided to illustrate the efficiency of the proposed control protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no data sets were generated or analyzed during the current study.

References

  1. Li, Z., Chen, X.: Adaptive actuator fault compensation and disturbance rejection scheme for spacecraft. Int. J. Control Autom. Syst. 19(2), 900–909 (2021)

    Article  Google Scholar 

  2. Gui, H., Vukovich, G.: Adaptive fault-tolerant spacecraft attitude control using a novel integral terminal sliding mode. Int. J. Robust Nonlinear Control 27(16), 3174–3196 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alatorre, A., Espinoza, E. S., Sánchez, B., Ordaz, P., Muñoz, F.,García Carrillo, L. R.: Parameter estimation and control of an unmanned aircraft-based transportation system for variable-mass payloads. Asian. J. Control. (in press). https://doi.org/10.1002/ASJC.2565

  4. Ordaz, P., Ordaz, M., Cuvas, C., Santos, O.: Reduction of matched and unmatched uncertainties for a class of nonlinear perturbed systems via robust control. Int. J. Robust Nonlinear Control 29(8), 2510–2524 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Wei, Y., Sheng, D., Chen, Z., Wang, Y.: Fractional order chattering-free robust adaptive backstepping control technique. Nonlinear Dyn. 95(3), 2383–2394 (2019)

    Article  MATH  Google Scholar 

  6. Jiang, T., Zhang, F., Lin, D.: Finite-time backstepping for attitude tracking with disturbances and input constraints. Int. J. Control Autom. Syst. 18(6), 1487–1497 (2020)

    Article  Google Scholar 

  7. Ji, W., Qiu, J., Wu, L., Lam, H.-K.: Fuzzy-Affine-Model-Based output feedback dynamic sliding mode controller design of nonlinear systems. IEEE Trans. Syst. 51(3), 1652–1661 (2021)

    Google Scholar 

  8. Ji, W., Qiu, J., Hamid, R.K., Fu, Y.: New results on fuzzy integral sliding mode control of nonlinear singularly perturbed systems. IEEE Trans. Fuzzy Syst. 27(9), 2062–2067 (2021)

    Article  Google Scholar 

  9. Vadali, S.R.: Variable-structure control of spacecraft large-angle maneuvers. J. Guid. Control. Dyn. 9(2), 235–239 (1986)

    Article  MATH  Google Scholar 

  10. Wu, B., Wang, D., Poh, E.K.: Decentralized sliding-mode control for attitude synchronization in spacecraft formation. Int. J. Robust Nonlinear Control 23(11), 1183–1197 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhu, Z., Xia, Y., Fu, M.: Adaptive sliding mode control for attitude stabilization with actuator saturation. IEEE Trans. Ind. Electron. 58(10), 4898–4907 (2011)

    Article  Google Scholar 

  12. Tabatabaee-Nasab, F.S., Naserifar, N.: Nanopositioning control of an electrostatic MEMS actuator: adaptive terminal sliding mode control approach. Nonlinear Dyn. 105(1), 213–225 (2021)

    Article  Google Scholar 

  13. Zong, Q., Shao, S.: Decentralized finite-time attitude synchronization for multiple rigid spacecraft via a novel disturbance observer. ISA Trans. 65, 150–163 (2016)

    Article  Google Scholar 

  14. Hou, H., Yu, X., Xu, L., Rsetam, K.A., Cao, Z.: Finite-Time continuous terminal sliding mode control of servo motor systems. IEEE Trans. Ind. Electron. 67(7), 5647–5656 (2020)

    Article  Google Scholar 

  15. Gan, C., Lu, P., Liu, X., Yang, D.: Distributed cooperative attitude tracking control for multiple rigid spacecraft using fast terminal sliding mode. In: Proceeding of the 11th world congress on intelligent control and automation, pp. 2687–2692 (2014)

  16. Shao, S., Zong, Q., Tian, B., Wang, F.: Finite-time sliding mode attitude control for rigid spacecraft without angular velocity measurement. J. Frankl. Inst. 354(12), 4656–4674 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang, Z., Li, Q., Li, S.: Adaptive integral-type terminal sliding mode fault tolerant control for spacecraft attitude tracking. IEEE Access. 7, 35195–35207 (2019)

    Article  Google Scholar 

  18. Shao, K.: Nested adaptive integral terminal sliding mode control for high-order uncertain nonlinear systems. Int. J. Robust Nonlinear Control 31(14), 6668–6680 (2021)

    Article  MathSciNet  Google Scholar 

  19. Sui, W., Duan, G., Hou, M., Zhang, M.: Distributed fixed-time attitude coordinated tracking for multiple rigid spacecraft via a novel integral sliding mode approach. J. Frankl. Inst. 357(14), 9399–9422 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhang, J., Zhao, W., Shen, G., Xia, Y.: Disturbance observer-based adaptive finite-time attitude tracking control for rigid spacecraft. IEEE Trans. Syst. Man Cybern. Syst. 51(11), 6606–6613 (2021)

    Article  Google Scholar 

  21. Pukdeboon, C., Zinober, A.S.I., Thein, M.-W.L.: Quasi-continuous higher order sliding-mode controllers for spacecraft-attitude-tracking maneuvers. IEEE Trans. Ind. Electron. 57(4), 1436–1444 (2010)

    Article  Google Scholar 

  22. Tiwari, P.M., Janardhanan, S., Nabi, M.: (2016) Attitude control using higher order sliding mode. Aerosp. Sci. Technol. 54, 108–113 (2016)

    Article  Google Scholar 

  23. Tian, B., Zong, Q., Wang, J., Wang, F.: Quasi-continuous high-order sliding mode controller design for reusable launch vehicles in reentry phase. Aerosp. Sci. Technol. 28(1), 198–207 (2013)

    Article  Google Scholar 

  24. Lu, K., Xia, Y.: Finite-time fault-tolerant control for rigid spacecraft with actuator saturations. IET Control Theory Appl. 7(11), 1529–1539 (2013)

    Article  MathSciNet  Google Scholar 

  25. Chen, Q., Xie, S., He, X.: Neural-network-Based adaptive singularity-free fixed-time attitude tracking control for spacecrafts. IEEE Trans. Cybern. pp. 1–14 (2020)

  26. Shi, X., Zhou, Z., Zhou, D.: Finite-time attitude trajectory tracking control of rigid spacecraft. IEEE Trans. Aerosp. Electron. Syst. 53(6), 2913–2923 (2017)

    Article  Google Scholar 

  27. Shen, G., Xia, Y., Zhang, J., Cui, B.: Adaptive fixed-time trajectory tracking control for Mars entry vehicle. Nonlinear Dyn. 102(4), 2687–2698 (2020)

    Article  Google Scholar 

  28. Djennoune, S., Bettayeb, M., Al Saggaf, U.M.: Impulsive observer with predetermined finite convergence time for synchronization of fractional-order chaotic systems based on Takagi-Sugeno fuzzy model. Nonlinear Dyn. 98(2), 1331–1354 (2019)

    Article  Google Scholar 

  29. Su, Y., Zheng, C.: A simple unified control for output feedback finite-time stabilization of uncertain planar systems without controllable/observable linearization. IEEE Trans. Circuits Syst. 68(1), 326–330 (2021)

    Article  Google Scholar 

  30. Lin, X., Shi, X., Li, S., Nguang, S.K., Zhang, L.: Nonsingular fast terminal adaptive neuro-sliding mode control for spacecraft formation flying systems. Complexity. pp. 1–15 (2020)

  31. Lin, X., Chen, C., Li, S.: Finite-Time output feedback stabilization for a class of output-constrained planar switched systems. IEEE Trans. Circuits Syst. II Express Briefs 69(1), 164–168 (2022)

  32. Zong, Q., Zhang, X., Shao, S., Tian, B., Liu, W.: Disturbance observer-based fault-tolerant attitude tracking control for rigid spacecraft with finite-time convergence. Proc. Inst. Mech. Eng G. J. Aerosp Eng. 233(2), 616–628 (2017)

    Article  Google Scholar 

  33. Muñoz-Vázquez, A.J., Fernández-Anaya, G., Sánchez-Torres, J.D., Meléndez-Vázquez, F.: Predefined-time control of distributed-order systems. Nonlinear Dyn. 103(3), 2689–2700 (2021)

    Article  Google Scholar 

  34. Laghrouche, S., Plestan, F., Glumineau, A.: Higher order sliding mode control based on integral sliding mode. Automatica (Oxf). 43(3), 531–537 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Obeid, H., Fridman, L.M., Laghrouche, S., Harmouche, M.: Barrier function-based adaptive sliding mode control. Automatica (Oxf). 93, 540–544 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. Gao, J., Fu, Z., Zhang, S.: Adaptive fixed-time attitude tracking control for rigid spacecraft with actuator faults. IEEE Trans. Ind. Electron. 66(9), 7141–7149 (2019)

    Article  Google Scholar 

  37. Shao, K., Zheng, J., Wang, H., Wang, X., Lu, R., Man, Z.: Tracking control of a linear motor positioner based on barrier function adaptive sliding mode. IEEE Trans. Indus. Inf. 17(11), 7479–7488 (2021)

    Article  Google Scholar 

  38. Xia, Y., Zhu, Z., Fu, M., Wang, S.: Attitude tracking of rigid spacecraft with bounded disturbances. IEEE Trans. Ind. Electron. 58(2), 647–659 (2011)

    Article  Google Scholar 

  39. Rekasius, Z.: An alternate approach to the fixed terminal point regulator problem. IEEE Trans. Automat. Control 9(3), 290–292 (1964)

    Article  MathSciNet  Google Scholar 

  40. Sánchez-Torres, J.D., Muñoz-Vázquez, A.D., Defoort, M., Aldana-López, R., Gómez-Gutiérrez, D.: Predefined-time integral sliding mode control of second-order systems. Int. J. Syst. Sci. 51(16), 3425–3435 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  41. Dong, Y., Zou, A.-M., Sun, Z.: Predefined-Time predefined-bounded attitude tracking control for rigid spacecraft. IEEE Trans. Aerosp. Electron. Syst. 58(1), 464–472 (2021)

    Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the Editor and all of the reviewers for their professional and constructive comments and suggestions, which have greatly improved the quality of this paper.

Funding

This work is supposed in part by the Foundation under Grant 2019-JCJQ-ZD-049. The National Natural Science Foundation of China under Grants 61703134, 62022060, 62073234, and 61773278. The China Postdoctoral Science Foundation under Grant 2019M650874. The Science and Technology Research Project of Colleges and Universities in Hebei Province under Grant BJ2020017. The Undergraduate Education and Teaching Reform Research and Practice Project 202004023. The Key R &D Program of Hebei Province 20310802D, Natural Science Foundation of Hebei Province under Grants F2019202369, F2018202279 and F2019 202363.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Wang.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Hu, Y. & Ji, W. Barrier function-based adaptive integral sliding mode finite-time attitude control for rigid spacecraft. Nonlinear Dyn 110, 1405–1420 (2022). https://doi.org/10.1007/s11071-022-07727-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07727-6

Keywords

Navigation