Skip to main content
Log in

Effects of immune response and time delays in models of acute myeloid leukemia

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we propose a general acute myeloid leukemia (AML) model and introduce an immune response and time delays into this model to investigate their effects on the dynamics. Based on the existence, stability and local bifurcation of three types of equilibria, we show that the immune response is a best strategy for the control of the AML on the condition that the rates of proliferation and differentiation of the hematopoietic lineage exceed a threshold. In particular, a powerful immune response leads to a bistability feature meaning there exist the leukemia cells and healthy cells in the bone marrow or only the healthy cells. In addition, we further reveal that the time delays in the feedback regulation and immune response process induce a series of oscillations around the steady state, which shows that the leukemia cells are hardly eliminated. Our work in this paper aims to investigate the complex dynamics of this AML model with the immune response and time delays on the basis of mathematical models and numerical simulations, which may provide a theoretical guidance for the treatments of the AML.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Estey, E., Döhner, H.: Acute myeloid leukaemia. Lancet 368, 1894–1907 (2006)

    Article  Google Scholar 

  2. Khwaja, A., Bjorkholm, M., Gale, R., et al.: Acute myeloid leukaemia. Nat. Rev. Dis. Primers 2, 16010 (2016)

    Article  Google Scholar 

  3. Lapidot, T., Sirard, C., Vormoor, J., et al.: A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367, 645–648 (1994)

    Article  Google Scholar 

  4. Bonnet, D., Dick, J.: Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 3, 730–737 (1997)

    Article  Google Scholar 

  5. Passegué, E., Jamieson, C., Ailles, L., Weissman, I.: Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics. Proc. Natl. Acad. Sci. 100, 11842–11849 (2003)

    Article  Google Scholar 

  6. Döhner, H., Estey, E., Amadori, S., et al.: Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel on behalf of the European Leukemia Net. Blood 115, 453–474 (2010)

    Article  Google Scholar 

  7. Linker, C.: Autologous stem cell transplantation for acute myeloid leukemia. Bone Marrow Transplant. 3(1), 731–738 (2003)

    Article  Google Scholar 

  8. Schuurhuis, G., Meel, M., Wouters, F., et al.: Normal hematopoietic stem cells within the AML bone marrow have a distinct and higher ALDH activity level than co-existing leukemic stem cells. PLoS One 8, e78897 (2013)

    Article  Google Scholar 

  9. Saito, Y., Uchida, N., Tanaka, S., et al.: Induction of cell cycle entry eliminates human leukemia stem cells in a mouse model of AML. Nat. Biotechnol. 28, 275–280 (2010)

    Article  Google Scholar 

  10. Andersen, L., Mackey, M.: Resonance in periodic chemotherapy: a case study of acute myelogenous leukemia. J. Theor. Biol. 209, 113–130 (2001)

    Article  Google Scholar 

  11. Dean, M., Fojo, T., Bates, S.: Tumour stem cells and drug resistance. Net. Rev. Cancer 5, 275–284 (2005)

    Article  Google Scholar 

  12. Roeder, I., Loeffler, M.: A novel dynamic model of hematopoietic stem cell organization based on the concept of within-tissue plasticity. Exp. Hematol. 30, 853–861 (2002)

    Article  Google Scholar 

  13. Liso, A., Castiglione, F., Cappuccio, A., et al.: A one-mutation mathematical model can explain the age incidence of acute myeloid leukemia with mutated nucleophosmin (NPM1). Haematologica 93, 1219–1226 (2008)

    Article  Google Scholar 

  14. Cucuianu, A., Precup, R.: A hypothetical-mathematical model of acute myeloid leukaemia pathogenesis. Comput. Math. Methods Med. 11, 49–65 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Tan, B., Park, C., Ailles, L., Weissman, I.: The cancer stem cell hypothesis: a work in progress. Lab. Invest. 86, 1203–1207 (2006)

    Article  Google Scholar 

  16. Stiehl, T., Baran, N., Ho, A., Marciniak-Czochra, A.: Clonal selection and therapy resistance in acute leukaemias: mathematical modelling explains different proliferation patterns at diagnosis and relapse. J. R. Soc. Interface 11, 20140079 (2014)

    Article  Google Scholar 

  17. Stiehl, T., Baran, N., Ho, A., Marciniak-Czochra, A.: Cell division patterns in acute myeloid leukemia stem-like cells determine clinical course: a model to predict patient survival. Cancer Res. 75, 940–949 (2015)

    Article  Google Scholar 

  18. Stiehl, T., Marciniak-Czochra, A.: Mathematical modeling of leukemogenesis and cancer stem cell dynamics. Math. Model. Nat. Phenom. 7, 166–202 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. MacLean, A., Filippi, S., Stumpf, M.: The ecology in the hematopoietic stem cell niche determines the clinical outcome in chronic myeloid leukemia. Proc. Natl. Acad. Sci. 111, 3883–3888 (2014)

    Article  Google Scholar 

  20. Cozzio, A., Passegué, E., Ayton, P., et al.: Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev. 17, 3029–3035 (2003)

    Article  Google Scholar 

  21. Goardon, N., Marchi, E., Atzberger, A., et al.: Coexistence of LMPP-like and GMP-like leukemia stem cells in a cute myeloid leukemia. Cancer Cell 19, 138–152 (2011)

    Article  Google Scholar 

  22. Leo, D., Wagers, A.: Dynamic niches in the origination and differentiation of haematopoietic stem cells. Nat. Rev. Mol. Cell Biol. 12, 643–655 (2011)

    Article  Google Scholar 

  23. Marciniak-Czochra, A., Stiehl, T., Ho, A., Jäger, W., Wagner, W.: Modeling of asymmetric cell division in hematopoietic stem cells-regulation of self-renewal is essential for efficient repopulation. Stem Cells Dev. 18, 377–385 (2009)

    Article  Google Scholar 

  24. Lo, W., Chou, C., Gokoffski, K., et al.: Feedback regulation in multistage cell lineages. Math. Biosci. Eng. 6, 59–82 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rodriguez-Brenes, I., Komarova, N., Wodarz, D.: Evolutionary dynamics of feedback escape and the development of stem-cell-driven cancers. Proc. Natl. Acad. Sci. 108, 18983–18988 (2011)

    Article  Google Scholar 

  26. Lander, A., Gokoffski, K., Wan, F., Nie, Q., Calof, A.: Cell lineages and the logic of proliferative control. PLoS Biol. 7, e1000015 (2009)

    Article  Google Scholar 

  27. Pirayesh, B., Pazirandeh, A., Akbari, M.: Local bifurcation analysis in nuclear reactor dynamics by Sotomayor’s theorem. Ann. Nucl. Energy 94, 716–731 (2016)

    Article  Google Scholar 

  28. Crowell, H., MacLean, A., Stumpf, M.: Feedback mechanisms control coexistence in a stem cell model of acute myeloid leukaemia. J. Theor. Biol. 401, 43–53 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Jiao, J., Luo, M., Wang, R.: Feedback regulation in a stem cell model with acute myeloid leukaemia. BMC Syst. Biol. 12, 43 (2018)

    Article  Google Scholar 

  30. Sharp, J., Browning, A., Mapder, T., Burrage, K., Simpson, M.: Optimal control of acute myeloid leukaemia. J. Theor. Biol. 470, 30–42 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. An, Q., Beretta, E., Kuang, Y., Wang, C., Wang, H.: Geometric stability switch criteria in delay differential equations with two delays and delay dependent parameters. J. Differ. Equ. 266, 7073–7100 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. Austina, R., Smythab, M., Lane, S.: Harnessing the immune system in acute myeloid leukaemia. Crit. Rev. Oncol. Hematol. 103, 62–77 (2016)

    Article  Google Scholar 

  33. Song, Z., Xu, J.: Self-/mutual-symmetric rhythms and their coexistence in a delayed half-center oscillator of the CPG neural system. Nonlinear Dyn. 108, 2595–2609 (2022)

    Article  Google Scholar 

  34. Chen, J., Xiao, J., Qiao, L., Xu, J.: Dynamics of scroll waves with time-delay propagation in excitable media. Commun. Nonlinear Sci. Numer. Simul. 59, 331–337 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Stépán, G.: Great delay in a predator-prey model. Nonlinear Anal. 10, 913–929 (1986)

  36. Niculescu, S., Kim, P., Gu, K., Lee, P., Levy, D.: Stability crossing boundaries of delay systems modeling immune dynamics in leukemia. Discrete Cont. Dyn. Syst. B 13, 129–156 (2010)

    MathSciNet  MATH  Google Scholar 

  37. Yang, L., Sun, W., Turcotte, M.: Coexistence of hopf-born rotation and heteroclinic cycling in a time-delayed three-gene auto-regulated and mutually-repressed core genetic regulation network. J. Theor. Biol. 27, 110831 (2021)

    MathSciNet  MATH  Google Scholar 

  38. Yao, H., Price, T., Cantelli, G., et al.: Leukaemia hijacks a neural mechanism to invade the central nervous system. Nature 560, 55–60 (2018)

    Article  Google Scholar 

  39. Pirayesh, B., Pazirandeh, A., Akbari, M.: Local bifurcation analysis in nuclear reactor dynamics by Sotomayor’s theorem. Ann. Nucl. Energy 94, 716–731 (2016)

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 11902106).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weigang Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 A. Numerical simulations

The non-delayed bifurcation diagrams are performed by Oscill8 software and the delayed bifurcation diagrams are performed by DDE-BIFTOOL, a Matlab toolbox for bifurcation analysis of time-delayed systems, and others are finished by the Matlab.

1.2 B. Denotations of involved parameters

Table 1 The definitions, basal values and references of all the parameters

1.3 C. Representations of the parameters

$$\begin{aligned} a_0&= 8 v_{10}v_{20} (p_{20} - 1)^2 (2 p_{10} - 1)(p_{10} -1)\\ a_1&=2(p_{20}-1)v_{20}\big (p_{10}(2p_{20}-1)\mu _D\\&\quad -4v_{10}(3g_1p_{10}p_{20}\\&\quad +4g_2p_{10}^2-3g_1p_{10}-2g_1p_{20}\\&\quad -6g_2p_{10}+2g_1+2g_2)\big )\\ a_2&=\mu _D^2p_{10}p_{20}+2p_{10}v_{20}(2p_{20}^2(g_1+h_1)\\&\quad -3p_{20}(g_1+g_2+h_1)+g_1+h_1+2g_2)\mu _D\\&\quad +8v_{10}v_{20}(g_1^2(p_{20}^2-2p_{20}+1)\\&\quad +g_1g_2(6p_{10}p_{20}-6p_{10}-4p_{20}+4)\\&\quad +g_2^2(2p_{10}^2-3p_{10}+1))\\ a_3&=p_{10}p_{20}(g_1+g_2+h_1+h_2)\mu _D^2\\&\quad -8g_1g_2v_{10}v_{20}(2g_1p_{20}+3g_2p_{10}-2g_1-2g_2)\\&\quad -2p_{10}v_{20}(3g_1g_2p_{20}-2g_1h_1p_{20}^2\\&\quad +3g_1h_1p_{20}+3g_2h_1p_{20}\\&\quad -2g_1g_2-g_1h_1-g_2^2-2g_2h_1)\mu _D\\ a_4&=p_{10}p_{20}((h_1+h_2)(g_1+g_2)+g_1g_2\\&\quad +h_1h_2)\mu _D^2+2g_2p_{10}v_{20}(g_1g_2-3g_1h_1p_{20}\\&\quad +2g_1h_1+g_2h_1)\mu _D+8g_1^2g_2^2v_{10}v_{20}\\ a_5&=\mu _D^2p_{10}p_{20}(g_1g_2(h_1+h_2)+h_1h_2(g_1+g_2))\\&\quad +2\mu _D g_1g_2^2h_1p_{10}v_{20}\\ a_6&=p_{10}p_{20}g_1g_2h_1h_2\mu _D^2\\ A_0&=f_{3A}f_{2D}f_{4L}f_{1S}f_{5T}+f_{4A}f_{3D}f_{2L}f_{1S}f_{5T}\\&\quad -f_{2A}f_{3D}f_{4L}f_{1S}f_{5T}-f_{3A}f_{1D}f_{4L}f_{2S}f_{5T}\\ A_1&=f_{2A}f_{3D}f_{4L}f_{1S}+f_{3A}f_{1D}f_{4L}f_{2S}\\&\quad -f_{3A}f_{2D}f_{4L}f_{1S}-f_{4A}f_{3D}f_{2L}f_{1S}\\&\quad +f_{2A}f_{3D}f_{4L}f_{5T}-f_{3A}f_{2D}f_{4L}f_{5T}\\&\quad -f_{4A}f_{3D}f_{2L}f_{5T}+f_{2A}f_{3D}f_{1S}f_{5T}\\&\quad +f_{3A}f_{1D}f_{2S}f_{5T}-f_{3A}f_{2D}f_{1S}f_{5T}\\&\quad -f_{3A}f_{4L}f_{1S}f_{5T}-f_{4A}f_{2L}f_{1S}f_{5T}\\&\quad +f_{3D}f_{4L}f_{1S}f_{5T}\\ A_2&=f_{3A}f_{2D}f_{4L}-f_{2A}f_{3D}f_{4L}+f_{4A}f_{3D}f_{2L}\\&\quad -f_{2A}f_{3D}f_{1S}-f_{3A}f_{1D}f_{2S}+f_{3A}f_{2D}f_{1S}\\&\quad -f_{2A}f_{3D}f_{5T}+f_{3A}f_{2D}f_{5T}-f_{2A}f_{4L}f_{1S}\\&\quad +f_{4A}f_{2L}f_{1S}-f_{2A}f_{4L}f_{5T}+f_{4A}f_{2L}f_{5T}\\&\quad -f_{3D}f_{4L}f_{1S}-f_{3D}f_{4L}f_{5T}-f_{2A}f_{1S}f_{5T}\\&\quad -f_{3D}f_{1S}f_{5T}-f_{4L}f_{1S}f_{5T}\\ A_3&=f_{2A}f_{3D}-f_{3A}f_{2D}+f_{2A}f_{4L}-f_{4A}f_{2L}\\&\quad +f_{3D}f_{4L}+f_{1S}f_{2A}+f_{2A}f_{5T}+f_{3D}f_{1S}\\&\quad +f_{3D}f_{5T}+f_{4L}f_{1S}+f_{4L}f_{5T}+f_{1S}f_{5T}\\ A_4&=-f_{1S}-f_{2A}-f_{3D}-f_{4L}-f_{5T}\\ m_0&=a_{44}\mu _Df_{1S}f_{2A}f_{5T}-\mu _Df_{1S}f_{2L}f_{4A}f_{5T}\\ m_1&=\mu _D\big (f_{1S}f_{2L}f_{4A}+f_{2L}f_{4A}f_{5T}-f_{1S}f_{2A}f_{5T}\\&\quad -a_{44}f_{1S}f_{5T}-a_{44}f_{2A}f_{5T}-a_{44}f_{1S}f_{2A}\big )\\&\quad +a_{44}f_{1S}f_{2A}f_{5T}-f_{1S}f_{2L}f_{4A}f_{5T}\\ m_2&=-a_{44}\big (f_{1S}f_{2A}+f_{2A}f_{5T}\\&\quad +f_{1S}f_{5T}-f_{2A}\mu _D-f_{1S}\mu _D-f_{5T}\mu _D\big )\\&\quad -\mu _D\big (f_{2L}f_{4A}-f_{1S}f_{2A}-f_{2A}f_{5T}-f_{1S}f_{5T}\big )\\&\quad +f_{1S}f_{2L}f_{4A}+f_{2L}f_{4A}f_{5T}-f_{1S}f_{2A}f_{5T}\\ m_3&=a_{44}(f_{1S}+f_{2A}+f_{5T})-\mu _D(a_{44}+f_{1S}\\&\quad +f_{2A}+f_{5T}) -f_{4A}f_{2L}+f_{1S}f_{2A}\\&\quad +f_{2A}f_{5T}+f_{1S}f_{5T}\\ m_4&=\mu _D-a_{44}-f_{1S}-f_{2A}-f_{5T}\\ n_0&=a_{44}b_{23}f_{1S}f_{3A}f_{5T}-a_{44}f_{1D}f_{2S}f_{3A}f_{5T}\\&\quad +c_{33}f_{1S}f_{2L}f_{4A}f_{5T}+a_{44}c_{23}f_{1S}f_{3A}f_{5T}\\&\quad -a_{44}c_{33}f_{1S}f_{2A}f_{5T}\\ n_1&=-a_{44}b_{23}f_{1S}f_{3A}-a_{44}b_{23}f_{3A}f_{5T}\\&\quad +a_{44}f_{1D}f_{2S}f_{3A}-b_{23}f_{1S}f_{3A}f_{5T}\\&\quad +f_{1D}f_{2S}f_{3A}f_{5T} -a_{44}c_{23}f_{1S}f_{3A}\\&\quad +a_{44}c_{33}f_{1S}f_{2A}-a_{44}c_{23}f_{3A}f_{5T}\\&\quad +a_{44}c_{33}f_{2A}f_{5T}+a_{44}c_{33}f_{1S}f_{5T}\\&\quad -c_{33}f_{1S}f_{2L}f_{4A}-c_{33}f_{2L}f_{4A}f_{5T}\\&\quad -c_{23}f_{1S}f_{3A}f_{5T}+c_{33}f_{1S}f_{2A}f_{5T}\\ n_2&=a_{44}b_{23}f_{3A}+b_{23}f_{1S}f_{3A}+b_{23}f_{3A}f_{5T}\\&\quad -f_{1D}f_{2S}f_{3A}+a_{44}\big (c_{23}f_{3A}\\&\quad -c_{33}f_{2A}-c_{33}f_{1S}-c_{33}f_{5T}\big )\\&\quad +c_{33}\big (f_{2L}f_{4A}-f_{1S}f_{2A}\\&\quad -f_{2A}f_{5T}-f_{1S}f_{5T}\big )\\&\quad +c_{23}f_{3A}f_{1S}+c_{23}f_{3A}f_{5T} \\ n_3&=-(c_{23}+b_{23})f_{3A}+c_{33}\big (a_{44}+f_{2A}\\&\quad +f_{1S}+f_{5T}\big )\\ n_4&=-c_{33}\\ p_0&=d_{44}\mu _Df_{1S}f_{2A}f_{5T}\\ p_1&=d_{44}\big (f_{1S}f_{2A}f_{5T}-\mu _Df_{1S}f_{2A}\\&\quad -\mu _Df_{2A}f_{5T}-\mu _Df_{1S}f_{5T}\big )\\ p_2&=-d_{44}\big (f_{1S}f_{2A}+f_{2A}f_{5T}+f_{1S}f_{5T}\\&\quad -f_{2A}\mu _D-f_{1S}\mu _D-f_{5T}\mu _D\big )\\ p_3&=d_{44}\big (f_{1S}+f_{2A}+f_{5T}-\mu _D \big )\\ p_4&=-d_{44}\\ q_0&=d_{44}\big (b_{23}f_{1S}f_{3A}f_{5T}-f_{1D}f_{2S}f_{3A}f_{5T}\\&\quad +c_{23}f_{1S}f_{3A}f_{5T}-c_{33}f_{1S}f_{2A}f_{5T}\big )\\ q_1&=d_{44}\big (-b_{23}f_{1S}f_{3A}-b_{23}f_{3A}f_{5T}\\&\quad +f_{1D}f_{2S}f_{3A}+c_{33}f_{1S}f_{2A}\\&\quad -c_{23}f_{1S}f_{3A}-c_{23}f_{3A}f_{5T}\\&\quad +c_{33}f_{2A}f_{5T}+c_{33}f_{1S}f_{5T}\big )\\ q_2&=-d_{44}\big (c_{33}f_{1S}+c_{33}f_{2A}+c_{33}f_{5T}\\&\quad -c_{23}f_{3A}-b_{23}f_{3A}\big )\\ q_3&=c_{33}d_{44}\\ M_R&=m_4\omega ^4-m_2\omega ^2+m_0,\\ M_I&=\omega ^5-m_3\omega ^3+m_1\omega \qquad \qquad \qquad \\ N_R&=n_4\omega ^4-n_2\omega ^2+n_0,\\ N_I&=-n_3\omega ^3+n_1\omega \\ P_R&=p_4\omega ^4-p_2\omega ^2+p_0,\\ P_I&=-p_3\omega ^3+p_1\omega \\ Q_R&=-q_2\omega ^2+q_0,\\ Q_I&=-q_3\omega ^3+q_1\omega \\ X_1&=(M_IQ_I-M_RQ_R)(P_I-M_I)\\&\quad -(M_RQ_I+M_IQ_R)(M_R-P_R)\\&\quad +(Q_R^2+Q_I^2)(Q_I-N_I)\\ Y_1&=(M_IQ_I-M_RQ_R)(M_R+P_R)\\&\quad -(M_RQ_I+M_IQ_R)(M_I+P_I)\\&\quad +(Q_R^2+Q_I^2)(N_R+Q_R)\\ Z_1&=(M_IQ_I-M_RQ_R)N_R\\&\quad -(M_RQ_I+M_IQ_R)N_I+(Q_R^2+Q_I^2)P_R\\ X_2&=(M_RQ_R-M_IQ_I)(M_R-P_R)\\&\quad -(M_RQ_I+M_IQ_R)(P_I-M_I)\\&\quad +(Q_R^2+Q_I^2)(N_R-Q_R)\\ Y_2&=(M_RQ_R-M_IQ_I)(M_I+P_I)\\&\quad -(M_RQ_I+M_IQ_R)(M_R+P_R)\\&\quad +(Q_R^2+Q_I^2)(N_I+Q_I)\\ Z_2&=(M_RQ_R-M_IQ_I)N_I\\&\quad -(M_RQ_I+M_IQ_R)N_R+(Q_R^2+Q_I^2)P_I\\ M&=\lambda ^5+m_4\lambda ^4+m_3\lambda ^3+m_2\lambda ^2+m_1\lambda +m_0\\ N&=n_4\lambda ^4+n_3\lambda ^3+n_2\lambda ^2+n_1\lambda +n_0\\ P&=p_4\lambda ^4+p_3\lambda ^3+p_2\lambda ^2+p_1\lambda +p_0\\ Q&=q_3\lambda ^3+q_2\lambda ^2+q_1\lambda +q_0\\ M'&=5\lambda ^4+4m_4\lambda ^3+3m_3\lambda ^2+2m_2\lambda +m_1\\ N'&=4n_4\lambda ^3+3n_3\lambda ^2+2n_2\lambda +n_1\\ P'&=4p_4\lambda ^3+3p_3\lambda ^2+2p_2\lambda +p_1\\ Q'&=3q_3\lambda ^2+2q_2\lambda +q_1\\ F_R&=\text {Re}(M')+\text {Re}(N')\cos (\omega \tau )\\&\quad +\text {Im}(N')\sin (\omega \tau )+\text {Re}(P')\cos (2\omega \tau )\\&\quad +\text {Im}(P')\sin (2\omega \tau )\\&\quad +\text {Re}(Q')\cos (3\omega \tau )+\text {Im}(Q')\sin (3\omega \tau )\\ F_I&=\text {Im}(M')+\text {Im}(N')\cos (\omega \tau )\\&\quad -\text {Re}(N')\sin (\omega \tau )+\text {Im}(P')\cos (2\omega \tau )\\&\quad -\text {Re}(P')\sin (2\omega \tau )+\text {Im}(Q')\cos (3\omega \tau )\\&\quad -\text {Re}(Q')\sin (3\omega \tau )\\ T_R&=\text {Re}(N)\cos (\omega \tau )+\text {Im}(N)\sin (\omega \tau )\\&\quad +2\text {Re}(P)\cos (2\omega \tau )+2\text {Im}(P)\sin (2\omega \tau )\\&\quad +3\text {Re}(Q)\cos (3\omega \tau )+3\text {Im}(Q)\sin (3\omega \tau )\\ T_I&=\text {Im}(N)\cos (\omega \tau )\\&\quad -\text {Re}(N)\sin (\omega \tau )+2\text {Im}(P)\cos (2\omega \tau )\\&\quad -2\text {Re}(P)\sin (2\omega \tau )\\&\quad +3\text {Im}(Q)\cos (3\omega \tau )\\&\quad -3\text {Re}(Q)\sin (3\omega \tau )\\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, W., Yang, L. & Luo, M. Effects of immune response and time delays in models of acute myeloid leukemia. Nonlinear Dyn 110, 1789–1805 (2022). https://doi.org/10.1007/s11071-022-07697-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07697-9

Keywords

Navigation