Skip to main content
Log in

Nonlinear dynamic model of ball bearings with elastohydrodynamic lubrication and cage whirl motion, influences of structural sizes, and materials of cage

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper proposes a nonlinear dynamic model of angular contact ball bearings with elastohydrodynamic lubrication and cage whirl motion. On this basis, the correlation between the dynamic stability of cage, interaction forces of bearing components, sliding of the ball, and vibration of inner ring is elaborated. Next, the effects of pocket diameter, small diameter and large diameter of cage on the dynamic behaviors of the bearing system are revealed. Also, the influence of material density of cage on the dynamic behaviors is investigated. The results show that in the design stage of ball bearings, the wonderful dynamic stability of cage should firstly be guaranteed by the optimal ratio of pocket clearance to guiding clearance; on this basis, guiding clearance should be adjusted to obtain the acceptable vibration of inner ring. Moreover, copper cage is disadvantageous for attenuating the vibration of the bearing system, while light material cage is beneficial for improving the dynamic stability of cage and attenuating the vibration of the bearing system, especially, the best is polytetrafluoroethylene, next is phenolic laminate and third is polyamide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36

Similar content being viewed by others

Data availability

All data generated during this study are included in this article and the datasets are available from the corresponding author on reasonable request.

Abbreviations

a :

Major axis of the elliptical area

b :

Minor axis of the elliptical area

δ :

Displacements of bearing components

θ :

Deflection angle of the bearing ring

Q :

Contact force

α :

Contact angle

F :

Force acting on bearing components

M :

Moment

I :

Moment of inertia

ω :

Angle velocity

m :

Mass

ρ :

Density of lubricant

η :

Viscosity of lubricant

D :

Diameter

d :

Bearing pitch diameter

T :

Temperature

h :

Oil film thickness

Δv :

Differential slipping speed

p :

Pressure in contact area

Δu :

Relative skidding speed

u :

Entrainment velocity

h 1 :

Center oil film thickness

R :

Equivalent radius of curvature

ϑ :

Elastic deformation

E’ :

Equivalent modulus of elasticity

w :

External load

p H :

Maximum Hertz contact pressure

E rp :

Relative errors of pressure

E rw :

Relative errors of load

k :

Ellipticity

ϕ :

Position angle

K′ :

Coefficient of contact stiffness

ξ :

Viscous damping coefficient

C :

Clearance

µ :

Friction coefficient

r :

Radius

ħ :

Eccentricity of the cage center

ħ :

Relative eccentricity

B :

Guide face width of the cage

ρ e :

Effective density of the oil

ζ :

Proportionality coefficient of the oil–gas mixture

A :

Acreage

ε :

Radius of vortex trajectory

L :

Acceleration level

σ :

Acceleration

Z :

Number of the ball

f :

Frequency

Г :

Thickness of cage

x/y/z :

Directions along three axes of the global coordinate system

x/y/z′:

Directions along three axes of the local coordinate system

x/y/z″:

Directions along three axes of the moving coordinate system

x c /y c /z c :

Directions along three axes of the cage coordinate system

i :

Inner ring

o :

Outer ring

n :

Represent i or o

b :

Ball

c :

Cage

j :

jTh ball

τ :

Friction effect

t :

Traction effect

e :

Retardation effect of lubricant

m :

Orbital revolution direction

ς :

Centrifugal direction

q :

Gyroscopic effect

v :

Viscous effect of lubricant

s :

Spin motion of balls

0:

Initial value

p :

Cage pockets

g :

Cage guidance

References

  1. Jones, A.B.: Ball motion and sliding friction in ball bearings. J. Basic Eng. 81, 1–12 (1959)

    Google Scholar 

  2. Harris, T.A.: Ball motion in thrust-loaded, angular contact bearings with coulomb friction. J. Lubr. Technol. 93(1), 32–38 (1971)

    Google Scholar 

  3. Gupta, P.K.: Dynamics of rolling-element bearings, part III: ball bearing analysis. J. Tribol. 101(3), 312–318 (1979)

    Google Scholar 

  4. Jain, S., Hunt, H.: A dynamic model to predict the occurrence of skidding in wind-turbine bearings. J. Phy. Conf. Ser. 305(1), 012027 (2011)

    Google Scholar 

  5. Tu, W., Shao, Y.M., Mechefske, C.K.: An analytical model to investigate skidding in rolling element bearings during acceleration. J. Mech. Sci. Technol. 26(8), 2451–2458 (2012)

    Google Scholar 

  6. Wang, Y., Wang, W., Zhang, S., Qiang, Z.: Investigation of skidding in angular contact ball bearings under high speed. Tribol. Int. 92, 404–417 (2015)

    Google Scholar 

  7. Han, Q., Chu, F.: Nonlinear dynamic model for skidding behavior of angular contact ball bearings. J. Sound Vib. 354, 219–235 (2015)

    Google Scholar 

  8. Gao, S., Steven, C., Lorenzo, N., Paolo, P.: Ball bearing skidding and over-skidding in large-scale angular contact ball bearings: nonlinear dynamic model with thermal effects and experimental results. Mech. Syst. Signal Process. 147, 107120 (2021)

    Google Scholar 

  9. Lynagh, N., Rahnejat, H., Ebrahimi, M., Aini, R.: Bearing induced vibration in precision high speed routing spindles. Int. J. Mach. Tools Manuf. 40(4), 561–577 (2000)

    Google Scholar 

  10. Liu, J., Xue, L., Xu, Z., Wu, H., Pan, G.: Vibration characteristics of a high-speed flexible angular contact ball bearing with the manufacturing error. Mech. Mach. Theory 162, 104335 (2021)

    Google Scholar 

  11. Qian, D.S., Xu, X.T., Deng, S., Jiang, S.F., Hua, L.: Sliding behavior of high speed ball bearings based on improved nonlinear dynamic model. Proc. Inst. Mech. Eng. Part K J. Multibody Dyn. 1–14 (2021)

  12. Tu, W., Yu, W., Shao, Y., Yu, Y.: A nonlinear dynamic vibration model of cylindrical roller bearing considering skidding. Nonlinear Dyn. 103, 2299–2313 (2021)

    Google Scholar 

  13. Kingsbury, E., Walker, R.: Motions of an unstable retainer in an instrument ball bearing. J. Tribol. 116(2), 202–208 (1994)

    Google Scholar 

  14. Ghaisas, N., Wassgren, C.R., Sadeghi, F.: Cage instabilities in cylindrical roller bearings. J. Tribol. 126(4), 681–689 (2004)

    Google Scholar 

  15. Liu, J., Wu, H., Shao, Y.: A theoretical study on vibrations of a ball bearing caused by a dent on the races. Eng. Fail. Anal. 83, 220–229 (2017)

    Google Scholar 

  16. Takabi, J., Khonsari, M.M.: On the influence of traction coefficient on the cage angular velocity in roller bearings. Tribol. Trans. 57(5), 793–805 (2014)

    Google Scholar 

  17. Cui, Y., Deng, S., Zhang, W., Chen, G.: The impact of roller dynamic unbalance of high-speed cylindrical roller bearing on the cage nonlinear dynamic characteristics. Mech. Mach. Theory 118, 65–83 (2017)

    Google Scholar 

  18. Shi, H., Bai, X., Zhang, K., Wu, Y., Wang, Z.: Effect of thermal-related fit clearance between outer ring and pedestal on the vibration of full ceramic ball bearing. Shock. Vib. 2019, 1–15 (2019)

    Google Scholar 

  19. Deng, S., Lu, Y., Zhang, W., Sun, X., Lu, Z.: Cage slip characteristics of a cylindrical roller bearing with a trilobe-raceway. Chin. J. Aeronaut. 31(02), 351–362 (2018)

    Google Scholar 

  20. Niu, L., Cao, H., He, Z., Li, Y.: An investigation on the occurrence of stable cage whirl motions in ball bearings based on dynamic simulations. Tribol. Int. 103, 12–24 (2016)

    Google Scholar 

  21. Liu, Y., Wang, W., Liang, H., Tao, Q., Wang, Y., Zhang, S.: Nonlinear dynamic behavior of angular contact ball bearings under microgravity and gravity. Int. J. Mech. Sci. 183, 105782 (2020)

    Google Scholar 

  22. Gupta, P.K.: Advanced Dynamics of Rolling Elements. Springer, New York (2012)

    Google Scholar 

  23. Hamrock, B.J., Dowson, D.: Ball Bearing Lubrication. Wiley, New York (1981)

    Google Scholar 

  24. Hamrock, B.J., Dowson, D.: Isothermal elastohydrodynamic lubrication of point contacts—Part III—fully flooded results. Trans. J. Lubr. Technol. 99(2), 264–276 (1977)

    Google Scholar 

  25. Harris, T.A., Kotzalas, M.N.: Rolling Bearing Analysis. Taylor & Francis, Boca Raton (2007)

    Google Scholar 

  26. Dowson, D., Hamrock, B.J.: Numerical evaluation of the surface deformation of elastic solids subjected to a Hertzian contact stress. ASLE Trans. 19(4), 279–286 (1976)

    Google Scholar 

  27. Kalker, J.J.: Numerical calculation of the elastic field in a half-space. Commun. Appl. Numer. Methods 2(4), 401–410 (1986)

    MATH  Google Scholar 

  28. Munisamy, R.L., Hills, D.A., Nowell, D.: A numerical analysis of an elastically dissimilar three-dimensional sliding contact. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 206(3), 203–211 (1992)

    Google Scholar 

  29. Dowson, D., Higginson, G.R., Whitaker, A.V.: Elaso-hydrodyanmic lubrication: survey of isothermal solutions. J. Mech. Eng. Sci. 4(2), 121–126 (1962)

    Google Scholar 

  30. Masjedi, M., Khonsari, M.M.: On the effect of surface roughness in point-contact EHL: formulas for film thickness and asperity load. Tribol. Int. 82, 228–244 (2015)

    Google Scholar 

  31. Dowson, D., Higginson, G.R.: A numerical solution to the elasto-hydrodynamic problem. J. Mech. Eng. Sci. 1(1), 6–15 (2006)

    MATH  Google Scholar 

  32. Lubrecht, A.A., Naple, W.T., Bosma, R.: Multigrid, an alternative method for calculating film thickness and pressure profiles in elastohydrodynamically lubricated line contacts. J. Tribol. 108(4), 551–556 (1986)

    Google Scholar 

  33. Corral, E., Moreno, R.G., García, M.J.G., Castejón, C.: Nonlinear phenomena of contact in multibody systems dynamics: a review. Nonlinear Dyn. 104, 1269–1295 (2021)

    Google Scholar 

  34. Corral, E., Moreno, R.G., Meneses, J., García, M.J.G., Castejón, C.: Spatial algorithms for geometric contact detection in multibody system dynamics. Mathematics. 9, 1359 (2021)

    Google Scholar 

  35. Hunt, K.H., Crossley, F.R.E.: Coefficient of restitution interpreted as damping in vibroimpact. J. Appl. Mech. 42(2), 440–445 (1975)

    Google Scholar 

  36. Hadden, G.B.: User’s Manual for Computer Program AT81Y003 SHABEARTH. NASA-CR-165365. (1981)

  37. Gismeros Moreno, R., Corral Abad, E., Meneses Alonso, J., García, M.J.G., Castejón Sisamón, C.: Modelling multiple-simultaneous impact problems with a nonlinear smooth approach: pool/billiard application. Nonlinear Dyn. 107, 1859–1886 (2022)

    Google Scholar 

  38. Cameron, A.: Basic Lubrication Theory. Ellis Horwood Ltd, Chichester (1981)

    Google Scholar 

  39. Yang, Z., Chen, H., Yu, T., Li, B.: A high-precision instrument for analyzing nonlinear dynamic behavior of bearing cage. Rev. Sci. Instrum. 87(8), 77–85 (2016)

    Google Scholar 

  40. He, J.H., Amer, T.S., Abolila, A.F., Galal, A.A.: Stability of three degrees-of-freedom auto-parametric system. Alex. Eng. J. 61(11), 8393–8415 (2022)

    Google Scholar 

  41. He, C.H., Amer, T.S., Tian, D., Abolila, A.F., Galal, A.A.: Controlling the kinematics of a spring-pendulum system using an energy harvesting device. J. Low Freq. Noise Vib. Active Control 1–24 (2022)

  42. Amer, T.S., Elkafly, H., Galal, A.A.: The 3D motion of a charged solid body using the asymptotic technique of KBM. Alex. Eng. J. 60(6), 5655–5673 (2021)

    Google Scholar 

  43. El-Sabaa, F.M., Amer, T.S., Gad, H.M., Bek, M.A.: Novel asymptotic solutions for the planar dynamical motion of a double-rigid-body pendulum system near resonance. J. Vib. Eng. Technol. (2022)

  44. Yan, X., Wang, X., Zhang, Y.: A numerical study of fatigue life in non-Newtonian thermal EHL rolling–sliding contacts with spinning. Tribol. Int. 80, 156–165 (2014)

    Google Scholar 

  45. Pasdari, M., Gentle, C.R.: Effect of lubricant starvation on the minimum load condition in a thrust-loaded ball bearing. ASLE Trans. 30(3), 355–359 (1987)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Important Science and Technology Innovation Program of Hubei province (No. 2021BAA019) and National Key Research and Development Program of China (2019YFB2004304) for the support given to this research.

Funding

The study was funded by the Important Science and Technology Innovation Program of Hubei Province (No. 2021BAA019) and National Key Research and Development Program of China (2019YFB2004304).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongsheng Qian or Feng Wang.

Ethics declarations

Conflict of interest

We declare that no conflict of interest exists in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, S., Chang, H., Qian, D. et al. Nonlinear dynamic model of ball bearings with elastohydrodynamic lubrication and cage whirl motion, influences of structural sizes, and materials of cage. Nonlinear Dyn 110, 2129–2163 (2022). https://doi.org/10.1007/s11071-022-07683-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07683-1

Keywords

Navigation