Skip to main content
Log in

Predefined-time robust control with formation constraints and saturated controls

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

A Correction to this article was published on 26 September 2022

This article has been updated

Abstract

In this paper, the predefined-time formation control problem of nonlinear multiagent systems is investigated by using the leader–follower control structure, in which agents are categorized into two types: leaders and followers. The leader determines the desired trajectory for a group of agents by selecting the control parameters. The followers update their actual positions with the specified local positions between themselves and the leader. Formation controls in the presence of practical problems with unknown bounded external disturbances, saturated input, and predefined-time convergence constraints under the directed topology are considered. To achieve the control objective with the consideration of different physical constraints, the general and saturated formation control laws are first presented, their stability analyses are provided, and the asymptotic stability of multiagent systems is ensured. Furthermore, according to two given formation approaches, an explicit smooth solution to the problem of predefined-time formation maneuver control is obtained. The settling time of the proposed predefined-time formation strategy for the followers can be determined by the system parameters, which are independent of the initial positions of the coefficient corresponding to the relative velocities of the agents. Finally, numerical simulations are carried out to illustrate the feasibility and efficacy of the obtained theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Data availability

The authors declare that the manuscript has no associated data.

Change history

References

  1. Papaioannou, S., Kolios, P., Theocharides, T., Panayiotou, C.G., Polycarpou, M.M.: A cooperative multiagent probabilistic framework for search and track missions. IEEE Trans. Control Netw. Syst. 8(2), 847–858 (2021)

    Article  MathSciNet  Google Scholar 

  2. Ramachandran, R.K., Fronda, N., Sukhatme, G.S.: Resilience in multirobot multitarget tracking with unknown number of targets through reconfiguration. IEEE Trans. Control Netw. Syst. 8(2), 609–620 (2021)

    Article  MathSciNet  Google Scholar 

  3. Sharma, R.S., Mondal, A., Behera, L.: Tracking control of mobile robots in formation in the presence of disturbances. IEEE Trans. Ind. Inform. 17(1), 110–123 (2021)

    Article  Google Scholar 

  4. Mwaffo, V., DeLellis, P., Humbert, J.S.: Formation control of stochastic multivehicle systems. IEEE Trans. Control Syst. Technol. 29(6), 2505–2516 (2021)

    Article  Google Scholar 

  5. Yang, X., Fan, X.: Distributed formation control for multiagent systems in the presence of external disturbances. IEEE Access 7, 80194–80207 (2019)

    Article  Google Scholar 

  6. Oh, K.-K., Park, M.-C., Ahn, H.-S.: A survey of multi-agent formation control. Automatica 53, 424–440 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bae, Y.-B., Lim, Y.-H., Ahn, H.-S.: Distributed robust adaptive gradient controller in distance-based formation control with exogenous disturbance. IEEE Trans. Autom. Control 66(6), 2868–2874 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, F., Dimarogonas, D.V.: Leader–follower formation control with prescribed performance guarantees. IEEE Trans. Control Netw. Syst. 8(1), 450–461 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  9. Van Tran, Q., Trinh, M.H., Zelazo, D., Mukherjee, D., Ahn, H.-S.: Finite-time bearing-only formation control via distributed global orientation estimation. IEEE Trans. Control Netw. Syst. 6(2), 702–712 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhao, J., Li, X., Yu, X., Wang, H.: Finite-time cooperative control for bearing-defined leader-following formation of multiple double-integrators. IEEE Trans. Cybern. (2021). https://doi.org/10.1109/TCYB.2021.3124827

    Article  Google Scholar 

  11. Li, X., Wen, C., Chen, C.: Adaptive formation control of networked robotic systems with bearing-only measurements. IEEE Trans. Cybern. 51(1), 199–209 (2021)

    Article  Google Scholar 

  12. Cajo, R., et al.: Distributed formation control for multiagent systems using a fractional-order proportional–integral structure. IEEE Trans. Control Syst. Technol. 29(6), 2738–2745 (2021)

    Article  Google Scholar 

  13. Liu, D., Liu, H., Valavanis, K.P.: Fully distributed time-varying formation control for multiple uncertain missiles. IEEE Trans. Aerosp. Electron. Syst. 57(3), 1646–1656 (2021)

    Article  Google Scholar 

  14. Hu, J., Bhowmick, P., Lanzon, A.: Distributed adaptive time-varying group formation tracking for multiagent systems with multiple leaders on directed graphs. IEEE Trans. Control Netw. Syst. 7(1), 140–150 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ringbäck, R., Wei, J., Erstorp, E.S., Kuttenkeuler, J., Johansen, T.A., Johansson, K.H.: Multi-agent formation tracking for autonomous surface vehicles. IEEE Trans. Control Syst. Technol. 29(6), 2287–2298 (2021)

    Article  Google Scholar 

  16. Chen, L., Mei, J., Li, C., Ma, G.: Distributed leader–follower affine formation maneuver control for high-order multiagent systems. IEEE Trans. Autom. Control 65(11), 4941–4948 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yang, X., Fan, X.: Robust formation control for uncertain multiagent systems with an unknown control direction and disturbances. IEEE Access 7, 106439–106452 (2019)

    Article  Google Scholar 

  18. Liu, H., Wang, Y., Lewis, F.L., Valavanis, K.P.: Robust formation tracking control for multiple quadrotors subject to switching topologies. IEEE Trans. Control Netw. Syst. 7(3), 1319–1329 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lippay, Z.S., Hoagg, J.B.: Formation control with time-varying formations, bounded controls, and local collision avoidance. IEEE Trans. Control Syst. Technol. 30(1), 261–276 (2022)

    Article  Google Scholar 

  20. Chan, N.P.K., Jayawardhana, B., Garcia de Marina, H.: Stability analysis of gradient-based distributed formation control with heterogeneous sensing mechanism: the three robot case. IEEE Trans. Autom. Control (2021). https://doi.org/10.1109/TAC.2021.3115881

    Article  MATH  Google Scholar 

  21. Jin, X., Tang, Y., Shi, Y., Zhang, W., Du, W.: Event-triggered formation control for a class of uncertain Euler–Lagrange systems: theory and experiment. IEEE Trans. Control Syst. Technol. 30(1), 336–343 (2022)

    Article  Google Scholar 

  22. Chiang, M.-L., Chen, Y.-W., Chen, C.-S., Tsai, S.-H.: Distributed formation control of multiagent systems with specified order. IEEE Trans. Syst. Man Cybern. Syst. 52(1), 301–310 (2022)

    Article  Google Scholar 

  23. Wang, H., Yu, W., Ren, W., Lü, J.: Distributed adaptive finite-time consensus for second-order multiagent systems with mismatched disturbances under directed networks. IEEE Trans. Cybern. 51(3), 1347–1358 (2021)

    Article  Google Scholar 

  24. Liu, H., Yu, H.: Finite-time control of continuous-time networked dynamical systems. IEEE Trans. Syst. Man Cybern. Syst. 50(11), 4623–4632 (2020)

    Article  Google Scholar 

  25. Yucelen, T., Kan, Z., Pasiliao, E.: Finite-time cooperative engagement. IEEE Trans. Autom. Control 64(8), 3521–3526 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yu, H., Chen, T.: On Zeno behavior in event-triggered finite-time consensus of multiagent systems. IEEE Trans. Autom. Control 66(10), 4700–4714 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, Y., Song, Y., Krstic, M.: Collectively rotating formation and containment deployment of multiagent systems: a polar coordinate-based finite time approach. IEEE Trans. Cybern. 47(8), 2161–2172 (2017)

    Article  Google Scholar 

  28. Dai, S.-L., Lu, K., Fu, J.: Adaptive finite-time tracking control of nonholonomic multirobot formation systems with limited field-of-view sensors. IEEE Trans. Cybern. (2021). https://doi.org/10.1109/TCYB.2021.3063481

    Article  Google Scholar 

  29. Yang, X., Fan, X., Long, F., Li, G.: Safety control using barrier certificates for multiagent systems with input saturation and formation constraints. J. Frankl. Inst. (2022). https://doi.org/10.1016/j.jfranklin.2022.05.012

    Article  MathSciNet  MATH  Google Scholar 

  30. Dai, S.-L., Lu, K., Jin, X.: Fixed-time formation control of unicycle-type mobile robots with visibility and performance constraints. IEEE Trans. Ind. Electron. 68(12), 12615–12625 (2021)

    Article  Google Scholar 

  31. Wang, C., Tnunay, H., Zuo, Z., Lennox, B., Ding, Z.: Fixed-time formation control of multirobot systems: design and experiments. IEEE Trans. Ind. Electron. 66(8), 6292–6301 (2019)

    Article  Google Scholar 

  32. Khanzadeh, A., Pourgholi, M.: Fixed-time sliding mode controller design for synchronization of complex dynamical networks. Nonlinear Dyn. 88(4), 2637–2649 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Jiménez-Rodríguez, E., Muñoz-Vázquez, A.J., Sánchez-Torres, J.D., Defoort, M., Loukianov, A.G.: A Lyapunov-like characterization of predefined-time stability. IEEE Trans. Autom. Control 65(11), 4922–4927 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  34. Muñoz-Vázquez, A.J., Sánchez-Torres, J.D., Jiménez-Rodríguez, E., Loukianov, A.G.: Predefined-time robust stabilization of robotic manipulators. IEEE/ASME Trans. Mechatron. 24(3), 1033–1040 (2019)

    Article  MATH  Google Scholar 

  35. Ni, J., Liu, L., Tang, Y., Liu, C.: Predefined-time consensus tracking of second-order multiagent systems. IEEE Trans. Syst. Man Cybern. Syst. 51(4), 2550–2560 (2021)

    Article  Google Scholar 

  36. Li, K., Hua, C., You, X., Ahn, C.K.: Output feedback predefined-time bipartite consensus control for high-order nonlinear multiagent systems. IEEE Trans. Circuits Syst. I Regul. Pap. 68(7), 3069–3078 (2021)

    Article  Google Scholar 

  37. Liang, C.-D., Ge, M.-F., Liu, Z.-W., Ling, G., Liu, F.: Predefined-time formation tracking control of networked marine surface vehicles. Control Eng. Pract. 107, 104682 (2021)

    Article  Google Scholar 

  38. Zeyu, G., Zuo, W., Shihua, L.: Global finite-time set stabilization of spacecraft attitude with disturbances using second-order sliding mode control. Nonlinear Dyn. (2022). https://doi.org/10.1007/s11071-2022-07245-5

    Article  Google Scholar 

  39. Mosavi, A., Qasem, S.N., Shokri, M., Band, S.S., Mohammadzadeh, A.: Fractional-order fuzzy control approach for photovoltaic/battery systems under unknown dynamics. Variable Irradiat. Temp. Electron. 9(9), 1455 (2020)

    Google Scholar 

  40. Mohammadzadeh, A., Taghavifar, H.: A robust fuzzy control approach for path-following control of autonomous vehicles. Soft Comput. 24, 3223–3235 (2020)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors appreciate the editor, the associate editor, and the anonymous reviewers for their valuable comments and suggestions, which have significantly improved the quality of this paper.

Funding

This work is supported in part by the Special project of 2021 Academic New Seedling Cultivation and Innovation Exploration of Guizhou Institute of Technology under Grant GZLGXM-07, National Natural Science Foundation of China under Grant 6186300, and the Science and Technology Planning Project of Guizhou Province under Grant 20191416.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Wu Yang.

Ethics declarations

Conflict of interest

We declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, XW., Fan, XP., Long, F. et al. Predefined-time robust control with formation constraints and saturated controls. Nonlinear Dyn 110, 2535–2554 (2022). https://doi.org/10.1007/s11071-022-07670-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07670-6

Keywords

Navigation