Skip to main content
Log in

Time-correlation function and average energy of molecules in presence of Deng-Fan potential in a moving boundary

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

For the Deng-Fan potential within a moving boundary condition, the time-dependent Schrödinger equation is considered analytically. The eigenvalue equation is solved by using a combination of Pekeris and Greene-Aldrich approximations. Various time-dependent quantities including density distribution function, auto-correlation function, disequilibrium, average energy, quantum similarity, and quantum similarity index are obtained for selected eight diatomic molecules. The motion of the peak of the density function, with moving boundary condition is investigated for ground states of some diatomic molecules along with the corresponding peak values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availibility

All data generated or analysed during this study are included in this article.

References

  1. Morse, P.M.: Diatomic molecules according to the wave mechanics II. Vibrational levels. Phys. Rev. 34, 57 (1929)

    Article  MATH  Google Scholar 

  2. Qiang, W.-C., Li, K., Chen, W.-L.: New bound and scattering state solutions of the Manning-Rosen potential with the centrifugal term. J. Phys. A 42, 205306 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Nasser, I., Abdelmonem, M.S., Abdel-Hady, A.: The Manning-Rosen potential using J-matrix approach. Mol. Phys. 111, 1 (2013)

    Article  Google Scholar 

  4. Roy, A.K.: Studies on bound-state spectra of Manning-Rosen potential. Mod. Phys. Lett. A 9, 1450042 (2014)

    Article  Google Scholar 

  5. Nath, D., Roy, A.K.: Ro-vibrational energy analysis of Manning-Rosen and Pöschl-Teller potentials with a new improved approximation in the centrifugal term. Eur. J. Plus Phys. 136, 430 (2021)

    Article  Google Scholar 

  6. Jia, C.-S., Diao, Y.-F., Yi, L.-Z., Chen, T.: Arbitrary \(\ell \)-wave solutions of the Schrödinger equation with the Hulthén potential model. Int. J. Mod. Phys. A 24, 4519 (2009)

    Article  MATH  Google Scholar 

  7. Gu, X.-Y., Sun, J.-Q.: Any \(\ell \)-state solutions of the Hulthén potential in arbitrary dimensions. J. Math. Phys. 51, 022106 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ikhdair, S.M., Abu-Hasna, J.: Quantization rule solution to the Hulthén potential in arbitrary dimension with a new approximate scheme for the centrifugal term. Phys. Scr. 83, 025002 (2011)

    Article  MATH  Google Scholar 

  9. Nath, D., Roy, A.K.: Energy and information analysis of Hulthén potential in D dimension by a simple approximation to the centrifugal term. J. Math. Chem, Communicated (2021)

    Google Scholar 

  10. Berkdemir, C., Berkdemir, A., Sever, R.: Systematical approach to the exact solution of the Dirac equation for a deformed form of the Woods-Saxon potential. J. Phys. A 39, 13455 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ikhdair, S.M., Sever, R.: Any \(\ell \)-state solutions of the Wood-Saxon potential in arbitrary dimensions within the new improved quantization rule. Int. J. Mod. Phys. A 25, 3941 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dong, S.H., Lemus, R.: Ladder operators for the modified Pöschl-Teller potential. Int. J. Quant. Chem. 86, 265 (2002)

    Article  Google Scholar 

  13. Atkas, M., Sever, R.: Exact supersymmetric solution of Schrödinger equation for central confining potentials by using the Nikiforov-Uvarov method. J. Mol. Structure: theochem 710, 223 (2004)

    Article  Google Scholar 

  14. Hamzavi, M., Rajabi, A.A., Thylwe, K.E.: The rotation-vibration spectrum of diatomic molecules with the tietz-hua rotating oscillator. Int. J. Quant. Chem. 112, 2701 (2012)

    Article  Google Scholar 

  15. Roy, A.K.: Ro-vibrational spectroscopy of molecules represented by a Tietz-Hua oscillator potential. J. Math. Chem. 52, 1405 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Onate, C.A., Onyeaju, M.C., Omugbe, E., Okon, I.B., Osafile, O.E.: Bound-state solutions and thermal properties of the modified Tietz-Hua potential. Sci. Rep. 11, 2129 (2021)

    Article  Google Scholar 

  17. Oyewumi, K.J., Akinpelu, F.O., Agboola, A.D.: Exactly complete solutions of the Pseudoharmonic potential in N-dimensions. Int. J. Theor. Phys. 47, 1039 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Maiz, F.: Analytic solutions for vibrational energy levels of the pseudoharmonic potential. Phys. Scr. 95, 105403 (2020)

    Article  Google Scholar 

  19. Ghosh, P., Nath, D.: Exact solutions and spectrum analysis of a noncentral potential in the presence of vector potential. Int. J. Quantum Chem. 120, e26153 (2020)

    Article  Google Scholar 

  20. Zhang, G.-D., Liu, J.-Y., Zhang, L.-H., Zhou, W., Jia, C.-S.: Modified Rosen-Morse potential-energy model for diatomic molecules. Phys. Rev. A 86, 062510 (2012)

    Article  Google Scholar 

  21. Udoh, M.E., Okorie, U.S., Ngwueke, M.I., Ltuen, E.E., Ikot, A.N.: Rotation-vibrational energies for some diatomic molecules with improved Rosen-Morse potential in D-dimensions. J. Mol. Model. 25, 170 (2019)

    Article  Google Scholar 

  22. Onate, C.A., Akanbi, T.A.: Solutions of the Schrödinger equation with improved Rosen Morse potential for nitrogen molecule and sodium dimer. Results. Phys. 22, 103961 (2021)

    Article  Google Scholar 

  23. Bayrak, O., Boztosun, I., Ciftci, H.: Exact analytical solutions to the Kratzer potential by the asymptotic iteration method. Int. J. Quant. Chem. 107, 540 (2007)

    Article  Google Scholar 

  24. Ikhdair, S.M., Sever, R.: Exact quantization rule to the Kratzer-type potentials: an application to the diatomic molecules. J. Math. Chem. 45, 1137 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nath, D., Roy, A.K.: Analytical solution of D dimensional Schrödinger equation for Eckart potential with a new improved approximation in centrifugal term. Chem. Phys. Lett. 780, 138909 (2021)

    Article  Google Scholar 

  26. Mesa, A.D.S., Quesne, C., Smirnov, Y.F.: Generalized Morse potential: symmetry and satellite potentials. J. Phys. A: Math. Gen. 31, 321 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rong, Z., Kjaergaard, H.G., Sage, M.L.: Comparison of the Morse and Deng-Fan potentials for X-H bonds in small molecules. Mol. Phys. 101, 2285 (2003)

    Article  Google Scholar 

  28. Hamzavi, M., Ikhdair, S.M., Thylwe, K.E.: Equivalence of the empirical shifted Deng-Fan oscillator potential for diatomic molecules. J. Math. Chem. 51, 227 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Codriansky, S., Cordero, P., Salamó, S.: On the generalized Morse potential. J. Phys. A: Math. Gen. 32, 6287 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. Dong, S.-H., Gu, X.-Y.: Arbitrary l state solutions of the Schrödinger equation with the Deng-Fan molecular potential. J. Phys. Conf. Ser. 96, 012109 (2008)

    Article  Google Scholar 

  31. Zhang, L.-H., Li, X.-P., Jia, C.-S.: Approximate Solutions of the Schrödinger equation with the generalized morse potential model including the Centrifugal Term. Int. J. Quant. Chem. 111, 1870 (2011)

    Article  Google Scholar 

  32. Zhang, L.-H., Li, X.-P., Jia, C.-S.: Approximate analytical solutions of the Dirac equation with the generalized Morse potential model in the presence of the spin symmetry and pseudo-spin symmetry. Phys. Scr. 80, 035003 (2009)

    Article  MATH  Google Scholar 

  33. Dong, S.H.: Relativistic treatment of spinless particles subject to a rotating Deng-Fan oscillator. Commun. Theor. Phys. 55, 969 (2011)

    Article  MATH  Google Scholar 

  34. Oluwadare, O.J., Oyewumi, K.J., Akoshile, C.O., Babalola, O.A.: Approximate analytical solutions of the relativistic equations with the Deng-Fan molecular potential including a Pekeris-type approximation to the (pseudo or) centrifugal term. Phys. Scr. 86, 035002 (2012)

    Article  MATH  Google Scholar 

  35. Oyewumi, K.J., Oluwadare, O.J., Sen, K.D., Babalola, O.A.: Bound state solutions of the Deng-Fan molecular potential with the Pekeris-type approximation using the Nikiforov-Uvarov (N-U) method. J. Math. Chem. 51, 976 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Hassanabadi, H., Yazarloo, B.H., Zarinkamar, S., Rahimov, H.: Deng-Fan potential for relativistic spinless particles - an ansatz solution. Commun. Theor. Phys. 57, 339 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ikot, A.N., Okorie, U.S., Rampho, G.J., Edet, C.O., Horchani, R., Abdel-aty, A., Alsheri, N.A., Elagan, S.K.: Bound and scattering state solutions of the Klein-Gordon equation with Deng-Fan potential in higher dimensions. Few-Body Sys. 62, 101 (2021)

    Article  Google Scholar 

  38. Roy, A.K.: Ro-Vibrational studies of diatomic molecules in a shifted Deng-Fan oscillator potential. Int. J. Quant. Chem. 114, 383 (2014)

    Article  Google Scholar 

  39. Oluwadare, O.J., Oyewumi, K.J.: Energy spectra and the expectation values of diatomic molecules confined by the shifted Deng-Fan potential. Eur. Phys. J. Plus 133, 422 (2018)

    Article  Google Scholar 

  40. Boukabcha, H., Hachama, H., Diaf, A.: Ro-vibrational energies of the shifted Deng-Fan oscillator potential with Feynman path integral formalism. Appl. Math. Comput. 321, 121 (2018)

    MathSciNet  MATH  Google Scholar 

  41. Oyewumi, K., Falaye, B., Onate, C., Oluwadare, O., Yahya, W.: Thermodynamic properties and the approximate solutions of the Schrödinger equation with the shifted Deng-Fan potential model. Mol. Phys. 112, 127 (2014)

    Article  Google Scholar 

  42. Nath, D., Roy, A.K.: Ro-vibrational energy and thermodynamic properties of molecules subjected to Deng-Fan potential through an improved approximation. Int. J. Quant. Chem. 121, e26616 (2021)

    Article  Google Scholar 

  43. Wang, P.Q., Zhang, L.H., Jia, C.S., Liu, J.Y.: Equivalence of the three empirical potential energy models for diatomic molecules. J. Mol. Spect. 274, 5 (2012)

    Article  Google Scholar 

  44. Li, L., Yu, F.: A generalized nonlocal Gross-Pitaevskii (NGP) equation with an arbitrary time-dependent linear potential. Appl. Math. Lett. 110, 106584 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  45. Yu, F., Liu, C., Li, L.: Broken and unbroken solutions and dynamic behaviors for the mixed local-nonlocal Schrödinger equation. Appl. Math. Lett. 117, 107075 (2021)

    Article  MATH  Google Scholar 

  46. Li, L., Liu, Y., Yu, F.: Some reverse space(RS) rational solutions for the nonlocal coupled nonlinear Schrödinger equations on the plane wave backgrounds. Appl. Math. Lett. 129, 107976 (2022)

    Article  MATH  Google Scholar 

  47. Lewis, H.R., Leach, P.G.: A direct approach to finding exact invariants for one dimensional time dependent classical Hamiltonians. J. Math. Phys. 23, 2371 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  48. Torrontegui, E., nez, S. I., Martínez-Garaot, S., Modugno, M., del Campo, A., Guéry-Odelin, D., uschhaupt, A. R., Chen, X., Muga, J. G.: Advances in Atomic, Molecular, and Optical Physics Chapter 2, 62, 117, Academic press, Cambridge (2013)

  49. Nath, D.: Comparison between time-independent and time-dependent quantum systems in the context of energy, Heisenberg uncertainty, average energy, force, average force and thermodynamic quantities, arXiv:2110.05609v2 [quant-ph] (2021)

  50. Carbó-Dorca, R., Nath, D.: Average energy and quantum similarity of a time dependent quantum system subject to Pöchl-Teller potential. J. Math. Chem. 60, 440 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  51. Doescher, S.W., Rice, M.H.: Infinite square-well potential with a moving wall. Am. J. Phys. 37, 1246 (1969)

    Article  Google Scholar 

  52. Munier, A., Burgan, J.R., Feix, M., Fajalkow, E.: Schrödinger equation with time-dependent boundary conditions. J. Math. Phys. 22, 1219 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  53. Pinder, D.N.: The contracting square quantum well. Am. J. Phys. 58, 54 (1990)

    Article  Google Scholar 

  54. Makowski, A.J., Dembinski, S.T.: Exactly solvable models with time-dependent boundary conditions. Phys. Lett. A 154, 217 (1991)

    Article  MathSciNet  Google Scholar 

  55. Makowski, A.J., Peplowski, P.: On the behaviour of quantum systems with time-dependent boundary conditions. Phys. Lett. A 163, 143 (1992)

    Article  Google Scholar 

  56. Makowski, A.J.: Two classes of exactly solvable quantum models with moving boundaries. J. Phys. A 25, 3419 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  57. Dodonov, V.V., Klimov, A.B., Nikonov, D.E.: Quantum particle in a box with moving walls. J. Math. Phys. 34, 3391 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  58. Cerveró, J.M., Lejarreta, J.D.: The time-dependent canonical formalism: generalized harmonic oscillator and the infinite square well with a moving boundary. Europhys. Lett. 45, 6 (1999)

    Article  Google Scholar 

  59. Lejarreta, J.D.: The generalized harmonic oscillator and the infinite square well with a moving boundary. J. Phys. A: Math. Gen. 32, 4749 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  60. DJ Fernández, C., Negro, J., Nieto, L.M.: Second-order supersymmetric periodic potentials. Phys. Lett. A 275, 338 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  61. Li, L., Li, B.-Z.: Exact evolving states for a class of generalized time-dependent quantum harmonic oscillators with a moving boundary. Phys. Lett. A. 291, 190 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  62. Yüce, C.: Singular potentials and moving boundaries in 3D. Phys. Lett. A. 321, 291 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  63. Yüce, C.: Exact solvability of moving boundary problems. Phys. Lett. A. 327, 107 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  64. Jana, T.K., Roy, P.: A class of exactly solvable Schrödinger equation with moving boundary condition. Phys. Lett. A. 372, 2368 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  65. Glasser, M.L., Mateo, J., Negro, J., Nieto, L.M.: Quantum infinite square well with an oscillating wall. Chaos, Solit & Fract 41, 2067 (2009)

    Article  Google Scholar 

  66. Fojón, O., Gadella, M., Lara, L.P.: The quantum square well with moving boundaries: a numerical analysis. Comput. Math. Appl. 59, 964 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  67. Patra, P., Dutta, A., Saha, J.P.: SUSY formalism for the symmetric double well potential. Pramana 80, 21 (2013)

    Article  Google Scholar 

  68. Contreras-Astorga, A., Hussin, V.: Infinite square-well, trigonometric Pöschl-Teller and other potential wells with a moving barrier, arXiv:1901.04606v1 [quant-ph] (2019)

  69. Mustafa, O.: On the Ro-vibrational energies for the lithium dimer; maximum-possible rotational levels. J. Phys. B: At. Mol. Opt. Phys. 48, 065101 (2015)

    Article  MathSciNet  Google Scholar 

  70. Varshni, Y.P.: Compaarative Study of potential energy functions for diatomic molecules. Rev. Mod. Phys. 29, 664 (1957)

    Article  Google Scholar 

  71. Weisstein, E. W.: Lambert W-function. From Mathword-A Wolfram web resource. (2002)

  72. Pekeris, C.L.: The rotation-vibration coupling in diatomic molecules. Phys. Rev. 45, 98 (1934)

    Article  MATH  Google Scholar 

  73. Greene, R.L., Aldrich, C.: Variational wave functions for a screened Coulomb potential. Phys. Rev. A 14, 2363 (1976)

    Article  Google Scholar 

  74. Ghosh, P., Nath, D.: Localization effect on Rényi complexity of Kratzer potential in the presence of Aharonov-Bohm field. Int. J. Quant. Chem. 121, e26461 (2021)

    Article  Google Scholar 

  75. Nath, D.: An introduction to analysis of Rényi complexity ratio of quantum states for central potential. Int. J. Quant. Chem. 122, e26816 (2022)

    Article  Google Scholar 

  76. Yüce, C.: Time-dependent PT symmetric problems. Phys. Lett. A. 336, 290 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  77. Chen, X., Ruschhaupt, A., Schmidt, S., del Campo, A., Guéry-Odelin, D., Muga, J.G.: Fast optimal frictionless atom cooling in harmonic traps: shortcut to adiabaticity. Phys. Rev. Lett. 104, 063002 (2010)

    Article  Google Scholar 

  78. Nakamura, K., Avazbaev, S.K., Sobirov, Z.A., Matrasulov, D.U., Monnai, T.: Ideal quantum gas in an expanding cavity: nature of nonadiabatic force. Phys. Rev. E 83, 041133 (2011)

    Article  Google Scholar 

  79. Nath, D., Roy, P.: Time-dependent rationally extended Pöschl-Teller potential and some of its properties. Eur. Phys. J. Phys. 135, 802 (2020)

    Google Scholar 

  80. Nath, D., Carbó-Dorca, R.: Analysis of solutions of time-dependent Schrödingerequation of a particle trapped in a spherical box. J. Math. Chem. 60, 1089 (2022)

  81. Tokmakoff, A.: Time-dependent quantum mechanics and spectroscopy. The University of Chocago, Chicago (2014)

    Google Scholar 

  82. Fring, A., Tenney, R.: Time-independent approximations for time-dependent optical potentials. Eur. Phys. J. Plus 135, 163 (2020)

    Article  MATH  Google Scholar 

  83. Carbó-Dorca, M.A.R., Leyda, L.: How similar is a molecule to another? An electron density measure of similarity between two molecular structures. Int. J. Quantum Chem. 17, 1185 (1980)

    Article  Google Scholar 

  84. Ghosh, P., Nath, D.: Complexity analysis of two families of orthogonal functions. Int. J. Quant. Chem. 119, e25964 (2019)

    Article  Google Scholar 

  85. Ghosh, P., Nath, D.: Generalized quantum similarity index: an application to pseudoharmonic oscillator with isospectral potentials in 3D. Int. J. Quant. Chem. 121, e26517 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

AKR thanks MATRICS (MTR/2019/00012) for financial support. DN gratefully acknowledges financial support from TARE, DST-SERB, New Delhi (TAR/2021/000142). Partial financial assistance from DST (CRG/2019/000293) is appreciated.

Funding

This study was funded by Science and Engineering Research Board (MTR/2019/00012, CRG/2019/000293, TAR/2021/000142).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debraj Nath.

Ethics declarations

Conflict of interest

The authors declare that they have no conflit of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nath, D., Roy, A.K. Time-correlation function and average energy of molecules in presence of Deng-Fan potential in a moving boundary. Nonlinear Dyn 110, 1597–1612 (2022). https://doi.org/10.1007/s11071-022-07664-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07664-4

Keywords

Navigation