Skip to main content
Log in

Exploring the interaction of influenza A subtypes H1N1 and H3N2 based on an evolution-driven transmission model

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Two influenza A subtypes (H1N1 and H3N2) co-circulate and pose a serious disease burden globally. It is unclear about the extent of cross-protection between these two influenza A subtypes as well as the impact of cross-protection on influenza dynamics. Based on an evolution-driven mathematical transmission model, the interaction between H1N1 and H3N2 was explored based on monthly incidence data in the USA from the years 2012 to 2019. The results showed that significant cross-protection between H1N1 and H3N2 exists. Besides, the cross-protection for H1N1 from H3N2 is much stronger than the other way around. The results also show that cross-protection between H1N1 and H3N2 has substantial influence on the epidemics. The model was also validated in Germany, Austria and Norway. A forecasting framework was proposed based on the model with feasible accuracy for both retrospective and prospective forecasts of H1N1 and H3N2 in the USA. Our findings quantify and highlight the importance of cross-protection on the co-circulating of seasonal influenza A H1N1 and H3N2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data and code availability

https://github.com/DuLab-SYSU/FluSubtypes_Evolution_Driven_Model

References

  1. Iuliano, A.D., et al.: Estimates of global seasonal influenza-associated respiratory mortality: a modelling study. Lancet (London, England). 391, 1285–1300 (2018)

    Article  Google Scholar 

  2. Chen, L., Han, X., Li, Y., Zhang, C., Xing, X.: Severity and outcomes of influenza-related pneumonia in type A and B strains in China, 2013–2019. Infect. Dis. Poverty 9, 42 (2020)

    Article  Google Scholar 

  3. Ekiert, D.C., et al.: Antibody recognition of a highly conserved influenza virus epitope. Science (New York, N.Y.). 324, 246–251 (2009)

    Article  Google Scholar 

  4. Dreyfus, C., et al.: Highly conserved protective epitopes on influenza B viruses. Science (New York, N.Y.) 337, 1343–1348 (2012)

    Article  Google Scholar 

  5. Ekiert, D.C., et al.: A highly conserved neutralizing epitope on group 2 influenza a viruses. Science (New York, N.Y.) 333, 843–850 (2011)

    Article  Google Scholar 

  6. Reber, A.J., et al.: Extensive T cell cross-reactivity between diverse seasonal influenza strains inthe ferret model. Sci. Rep.-UK 8, 6112 (2018)

    Article  Google Scholar 

  7. Gautam, A., et al.: Peritoneal cells mediate immune responses and cross-protection against influenza a virus. Front. Immunol. 10, 1160 (2019)

    Article  Google Scholar 

  8. Dong, W., et al.: Cross-protective immune responses induced by sequential influenza virus infection and by sequential vaccination with inactivated influenza vaccines. Front. Immunol. 9, 2312 (2018)

    Article  Google Scholar 

  9. Gooch, K.E., et al.: Heterosubtypic cross-protection correlates with cross-reactiveinterferon-gamma-secreting lymphocytes in the ferret model of influenza. Sci. Rep.-UK 9, 2617 (2019)

    Article  Google Scholar 

  10. Kreijtz, J.H.C.M., et al.: Primary influenza a virus infection induces cross-protective immunity against a lethal infection with a heterosubtypic virus strain in mice. Vaccine. 25, 612–620 (2007)

    Article  Google Scholar 

  11. Sonoguchi, T., Naito, H., Hara, M., Takeuchi, Y., Fukumi, H.: Cross-subtype protection in humans during sequential, overlapping, and/orconcurrent epidemics caused by H3N2 and H1N1 influenza viruses. J. Infect. Dis. 151, 81–88 (1985)

    Article  Google Scholar 

  12. Cowling, B. J. et al.: Incidence of influenza virus infections in children in Hong Kong in a 3-year randomized placebo-controlled vaccine study, 2009–2012. 517–524 (2014)

  13. Ranjeva, S., et al.: Age-specific differences in the dynamics of protective immunity to influenza. Nat. Commun. 10, 1660 (2019)

    Article  Google Scholar 

  14. Deyle, E.R., Maher, M.C., Hernandez, R.D., Basu, S., Sugihara, G.: Global environmental drivers of influenza. Proc. Natl. Acad. Sci. 113, 13081–13086 (2016)

    Article  Google Scholar 

  15. Dalziel, B.D., et al.: Urbanization and humidity shape the intensity of influenza epidemics in U.S.cities. Science (New York, N.Y.) 362, 75–79 (2018)

    Article  Google Scholar 

  16. Lavenu, A., Valleron, A., Carrat, F.: Exploring cross-protection between influenza strains by an epidemiological model. Virus Res. 103, 101–105 (2004)

    Article  Google Scholar 

  17. Goldstein, E., Cobey, S., Takahashi, S., Miller, J.C., Lipsitch, M.: Predicting the epidemic sizes of influenza A/H1N1, A/H3N2, and B: a statisticalmethod. PLoS Med. 8, e1001051 (2011)

    Article  Google Scholar 

  18. Nickbakhsh, S., et al.: Virus–virus interactions impact the population dynamics of influenza and the common cold. Proc. Natl. Acad. Sci. 116, 27142–27150 (2019)

    Article  Google Scholar 

  19. Shrestha, S., et al.: Identifying the interaction between influenza and pneumococcal pneumonia usingincidence data. Sci. Transl. Med. 5, 184r–191r (2013)

    Article  Google Scholar 

  20. Shrestha, S., King, A.A., Rohani, P.: Statistical inference for multi-pathogen systems. PLoS Comput. Biol. 7, e1002135 (2011)

    Article  MathSciNet  Google Scholar 

  21. Shrestha, S., et al.: The role of influenza in the epidemiology of pneumonia. Sci. Rep.-UK 5, 15314 (2015)

    Article  Google Scholar 

  22. Yang, W., Lau, E.H.Y., Cowling, B.J.: Dynamic interactions of influenza viruses in Hong Kong during 1998–2018. PLoS Comput. Biol. 16, e1007989 (2020)

    Article  Google Scholar 

  23. Gog, J.R., Grenfell, B.T.: Dynamics and selection of many-strain pathogens. P. Natl. Acad. Sci. Usa. 99, 17209–17214 (2002)

    Article  Google Scholar 

  24. Du, X., King, A.A., Woods, R.J., Pascual, M.: Evolution-informed forecasting of seasonal influenza A (H3N2). Sci. Transl. Med. 9, 11 (2017)

    Article  Google Scholar 

  25. Axelsen, J.B., Yaari, R., Grenfell, B.T., Stone, L.: Multiannual forecasting of seasonal influenza dynamics reveals climatic and evolutionary drivers. P. Natl. Acad. Sci. Usa. 111, 9538–9542 (2014)

    Article  Google Scholar 

  26. Sachak-Patwa, R., Byrne, H.M., Thompson, R.N.: Accounting for cross-immunity can improve forecast accuracy during influenza epidemics. Epidemics-Neth. 34, 100432 (2020)

    Article  Google Scholar 

  27. Kandula, S., Yang, W., Shaman, J.: Type- and subtype-specific influenza forecast. Am. J. Epidemiol. 185, 395–402 (2017)

    Article  Google Scholar 

  28. Edgar, R. C.: MUSCLE: multiple sequence alignment with high accuracy and high throughput. 1792–1797 (2004)

  29. Wiley, D.C., Wilson, I.A., Skehel, J.J.: Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation. Nature 289, 373–378 (1981)

    Article  Google Scholar 

  30. Price, M.N., Dehal, P.S., Arkin, A.P.: FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010)

    Article  Google Scholar 

  31. Grinsted, A., Moore, J.C., Jevrejeva, S.: Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Proc. Geophys. 11, 561–566 (2004)

    Article  Google Scholar 

  32. Cazelles, B., Chavez, M., Magny, G.C.D., Guégan, J., Hales, S.: Time-dependent spectral analysis of epidemiological time-series with wavelets. J. R. Soc. Interface. 4, 625–636 (2007)

    Article  Google Scholar 

  33. Scarpino, S.V., Allard, A., Hébert-Dufresne, L.: The effect of a prudent adaptive behaviour on disease transmission. Nat. Phys. 12, 1042 (2016)

    Article  Google Scholar 

  34. Bhadra, A., Ionides, E.L., Laneri, K., Pascual, M., Dhiman, R.C.: Malaria in Northwest India: data analysis via partially observed stochastic differential equation models driven by lvy noise. J. Am. Stat. Assoc. 106, 440–451 (2011)

    Article  MATH  Google Scholar 

  35. Du, X., et al.: Mapping of H3N2 influenza antigenic evolution in China reveals a strategy for vaccine strain recommendation. Nat. Commun. 3, 709 (2012)

    Article  Google Scholar 

  36. Ionides, E.L., Bretó, C., King, A.A.: Inference for nonlinear dynamical systems. P. Natl. Acad. Sci. Usa. 103, 18438–18443 (2006)

    Article  Google Scholar 

  37. Ionides, E.L., Breto, C., Park, J., Smith, R.A., King, A.A.: Monte Carlo profile confidence intervals for dynamic systems. J. Royal Soc, Interf. 14, 132 (2017)

    Article  Google Scholar 

  38. Möst, J., Weiss, G.: Consecutive infections with influenza a and b virus in children during the 2014–2015 seasonal influenza epidemic. J. Infect. Dis. 214, 1139–1141 (2016)

    Article  Google Scholar 

  39. Le Sage, V., et al.: Pre-existing heterosubtypic immunity provides a barrier to airborne transmission of influenza viruses. PLoS Pathog. 17, e1009273 (2021)

    Article  Google Scholar 

  40. D'Agostino McGowan, L., Grantz, K. H. & Murray, E.: Quantifying uncertainty in infectious disease mechanistic models. Am. J. Epidemiol (2021).

  41. Bedford, T., et al.: Global circulation patterns of seasonal influenza viruses vary with antigenic drift. Nature 523, 217–220 (2015)

    Article  Google Scholar 

  42. Baltrusaitis, K. et al.: Health-care seeking behavior for respiratory illness among flu near you participants in the United States during the 2015–16 through 2018–19 influenza season. J. Infect. Dise, (2020).

  43. Ma, W., Huo, X., Zhou, M.: The healthcare seeking rate of individuals with influenza like illness: a meta-analysis. Infect. Dis. 50, 728–735 (2018)

    Article  Google Scholar 

  44. Peppa, M., John Edmunds, W., Funk, S.: Disease severity determines health-seeking behaviour amongst individuals with influenza-like illness in an internet-based cohort. BMC Infect. Dis. 17, 238 (2017)

    Article  Google Scholar 

  45. Meade, P., Kuan, G., Strohmeier, S., Maier, H.E., Amanat, F., Balmaseda, A., Krammer, F.: Influenza virus infection induces a narrow antibody response in children but a broad recall response in adults. MBio 11(1), e03243-19 (2020)

    Article  Google Scholar 

  46. Gouma, S., et al.: Middle-aged individuals may be in a perpetual state of H3N2 influenza virus susceptibility. Nat. Commun. 11, 4566 (2020)

    Article  Google Scholar 

  47. Neher, R.A., Bedford, T., Daniels, R.S., Russell, C.A., Shraiman, B.I.: Prediction, dynamics, and visualization of antigenic phenotypes of seasonalinfluenza viruses. P. Natl. Acad. Sci. Usa. 113, E1701–E1709 (2016)

    Article  Google Scholar 

  48. Li, C., et al.: Selection of antigenically advanced variants of seasonal influenza viruses. Nat. Microbiol. 1, 16058 (2016)

    Article  Google Scholar 

  49. Petrova, V.N., Russell, C.A.: The evolution of seasonal influenza viruses. Nat. Rev. Microbiol. 16, 47–60 (2018)

    Article  Google Scholar 

  50. Arinaminpathy, N., et al.: Estimating direct and indirect protective effect of influenza vaccination in the United States. Am. J. Epidemiol. 186, 92–100 (2017)

    Article  Google Scholar 

  51. Backer, J.A., van Boven, M., van der Hoek, W., Wallinga, J.: Vaccinating children against influenza increases variability in epidemic size. Epidemics-Neth. 26, 95–103 (2019)

    Article  Google Scholar 

Download references

Funding

This research was funded by Shenzhen Science and Technology Program under grant KQTD20180411143323605, National Natural Science Foundation of China under Grants 31970643 and 81961128002, the Guangdong Frontier and Key Tech Innovation Program under grants 2021A111112007, 2019B020228001 and 2019B111103001, the Natural Science Foundation of Guangdong Province, China, under grant 2021A1515011592.

Author information

Authors and Affiliations

Authors

Contributions

XD designed the study. GW, SL and FT collected the data, GW, BZ and SL built the model. GW performed the analysis. XD, GW, BZ, SL, YZ and DT interpreted the data. XD and GW prepared the manuscript. XD, GW, BZ, YZ and DT edited the paper. All authors reviewed and approved the submitted manuscript.

Corresponding author

Correspondence to Xiangjun Du.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4865 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Zhang, B., Liang, S. et al. Exploring the interaction of influenza A subtypes H1N1 and H3N2 based on an evolution-driven transmission model. Nonlinear Dyn 110, 933–944 (2022). https://doi.org/10.1007/s11071-022-07661-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07661-7

Keywords

Navigation