Skip to main content
Log in

A nonlinear dynamic characteristic modeling method of shift manipulator for robot driver with multiple clearance joints

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The clearance joint is very important to the nonlinear dynamic characteristics of mechanism. This paper presents a nonlinear dynamic characteristic modeling method of shift manipulator for robot driver to improve dynamic characteristics. Using the improved L-N contact force model and the modified Coulomb friction model, the normal contact force and the tangential contact force of clearance joint are analyzed. With multiple clearance joints, the nonlinear dynamic characteristic model of the shift manipulator for robot driver is established. The nonlinear dynamic characteristic laws of the shift manipulator including the end displacement, velocity, acceleration and active joint driving torque are analyzed by different sizes of clearance joints. And the performance test of the shift manipulator for robot driver is conducted. The results demonstrate that the nonlinear dynamic characteristics are well analyzed and the validity of the modeling method is verified through the presented characteristic model with full clearance joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Kim, D.H., Kim, J.W., Choi, S.B.: Design and modeling of energy efficient dual clutch transmission with ball-ramp self-energizing mechanism. IEEE Trans. Veh. Technol. 69, 2525–2536 (2020). https://doi.org/10.1109/TVT.2019.2963332

    Article  Google Scholar 

  2. Kim, W.S., Kim, Y.J., Kim, Y.S., Baek, S.Y., Baek, S.M., Lee, D.H., Nam, K.C., Kim, T.B., Lee, H.J.: Development of control system for automated manual transmission of 45-kW agricultural tractor. Appl. Sci. 10, 2930–2950 (2020). https://doi.org/10.3390/app10082930

    Article  Google Scholar 

  3. Chen, G., Zhang, W.G.: Hierarchical coordinated control method for unmanned robot applied to automotive test. IEEE Trans. Ind. Electron. 63, 1039–1051 (2016). https://doi.org/10.1109/TIE.2015.2477266

    Article  Google Scholar 

  4. Chen, G., Chen, S.B., Langari, R., Li, X., Zhang, W.G.: Driver-behavior-based adaptive steering robust nonlinear control of unmanned driving robotic vehicle with modeling uncertainties and disturbance observer. IEEE Trans. Veh. Technol. 68, 8183–8190 (2019). https://doi.org/10.1109/TVT.2019.2922452

    Article  Google Scholar 

  5. Yechiel, O., Guterman, H.: IVO robot driver. In: 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall), pp. 1–5 (2016). https://doi.org/10.1109/VTCFall.2016.7881054

  6. Huang, X., Zhang, S., Peng, H.: Developing robot driver etiquette based on naturalistic human driving behavior. IEEE Trans. Intell. Transp. Syst. 21(4), 1393–1403 (2020). https://doi.org/10.1109/tits.2019.2913102

    Article  Google Scholar 

  7. Zhu, Y.H., Fu, Z.Y., Fu, Z., Chen, X., Wu, Q.: Multi-features fusion for fault diagnosis of pedal robot using time-speed signals. Sensors 19(1), 163 (2019). https://doi.org/10.3390/s19010163

    Article  Google Scholar 

  8. Hirata, N., Mizutani, N., Matsui, H., Yano, K., Takahashi, T.: Fuel consumption in a driving test cycle by robotic driver considering system dynamics. In: 2015 IEEE International Conference on Robotics and Automation (ICRA). Seattle, WA, USA, pp. 3374–3379 (2015). https://doi.org/10.1109/icra.2015.7139665

  9. Chen, G., Zhang, W.G., Yu, B.: Multibody dynamics modeling of electromagnetic direct-drive vehicle robot driver. Int. J. Adv. Robotic Syst. 14(5) (2017). https://doi.org/10.1177/1729881417731896

  10. Lu, W., Chen, H., Wang, L.: Motion analysis of tractor robot driver’s gear shift mechanical arm. Trans. Chin. Soc. Agric. Mach. 47(1), 37–44 (2016). https://doi.org/10.6041/j.issn.1000-1298.2016.01.006

    Article  Google Scholar 

  11. Yu, S.L., Chen, G.: Rigid-flexible coupling kinematics analysis of shifting manipulator for robot driver. Automot. Eng. 40(6), 733–740 (2018). https://doi.org/10.19562/j.chinasae.qcgc.2018.06.017

    Article  Google Scholar 

  12. Mizutani, N., Ishida, Y., Matsui, H., Yano, K., Takahashi, T.: Automatic driving control by robotic driver considering the lack of a driving force at changing gears. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Daejeon, Korea (South), pp. 3075–3080 (2016). https://doi.org/10.1109/iros.2016.7759476

  13. Chu, C.C., Wang, D., Zhang, W.G., Xu, T.: Speed control of electric vehicle driving robot based on inverse control strategy model. Automot. Eng. 42(09), 1166–1173 (2020). https://doi.org/10.19562/j.chinasae.qcgc.2020.09.004

    Article  Google Scholar 

  14. Zhou, N., Chen, G.: Dynamic analysis of gear shifting manipulator based on neural network load fluctuation simulation. China Mech. Eng. 31(4), 472–481 (2020). https://doi.org/10.3969/j.issn.1004-132X.2020.04.015

    Article  Google Scholar 

  15. Yu, L.Y., Zheng, S., Chang, J.H., Liu, X.X.: Pedal actuator of driver robot based on flexible manipulator. In: ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE). Cleveland, Ohio, USA (2017). https://doi.org/10.1115/DETC2017-68100

  16. Wu, X.Z.: Dynamic analysis of the double crank mechanism with a 3D translational clearance joint employing a variable stiffness contact force model. Nonlinear Dyn. 99(5), 1937–1958 (2020). https://doi.org/10.1007/s11071-019-05419-2

    Article  Google Scholar 

  17. Qian, M.B., Qin, Z., Yan, S.Z., Zhang, L.: A comprehensive method for the contact detection of a translational clearance joint and dynamic response after its application in a crank-slider mechanism. Mech. Mach. Theory. 145 (2020). https://doi.org/10.1016/j.mechmachtheory.2019.103717

  18. Zhang, H.D., Zhang, X.M., Zhang, X.C., Mo, J.S.: Dynamic analysis of a 3-PRR parallel mechanism by considering joint clearances. Nonlinear Dyn. 90(1), 405–423 (2017). https://doi.org/10.1007/s11071-017-3672-1

    Article  Google Scholar 

  19. Lv, T.Q., Zhang, Y.Q., Duan, Y.P., Yang, J.: Kinematics & compliance analysis of double wishbone air suspension with frictions and joint clearances. Mech. Mach. Theory. 156 (2021). https://doi.org/10.1016/J.MECHMACHTHEORY.2020.104127

  20. Xiang, W.W.K., Yan, S.Z., Wu, J.N., Niu, W.D.: Dynamic response and sensitivity analysis for mechanical systems with clearance joints and parameter uncertainties using Chebyshev polynomials method. Mech. Syst. Signal Process. 138 (2020). https://doi.org/10.1016/j.ymssp.2019.106596

  21. Zhan, Z.H., Zhang, X.M., Zhang, H.D., Chen, G.C.: Unified motion reliability analysis and comparison study of planar parallel manipulators with interval joint clearance variables. Mech. Mach. Theory 138, 58–75 (2019). https://doi.org/10.1016/j.mechmachtheory.2019.03.041

    Article  Google Scholar 

  22. Zhu, A.B., He, S.L., Zhao, J.W., Luo, W.C.: A nonlinear contact pressure distribution model for wear calculation of planar revolute joint with clearance. Nonlinear Dyn. 88(1), 315–328 (2017). https://doi.org/10.1007/s11071-016-3244-9

    Article  Google Scholar 

  23. Fang, C.C., Meng, X.H., Lu, Z.J., Wu, G., Tang, D.H., Zhao, B.: Modeling a lubricated full-floating pin bearing in planar multibody systems. Tribol. Int. 131, 222–237 (2019). https://doi.org/10.1016/j.triboint.2018.10.045

    Article  Google Scholar 

  24. Wang, Z., Tian, Q., Hu, H.Y., Flores, P.: Nonlinear dynamics and chaotic control of a flexible multibody system with uncertain joint clearance. Nonlinear Dyn. 86(3), 1571–1597 (2016). https://doi.org/10.1007/s11071-016-2978-8

    Article  Google Scholar 

  25. Li, Y.Y., Wang, C., Huang, W.H.: Dynamics analysis of planar rigid-flexible coupling deployable solar array system with multiple revolute clearance joints. Mech. Syst. Signal Process. 117, 188–209 (2019). https://doi.org/10.1016/j.ymssp.2018.07.037

    Article  Google Scholar 

  26. Tian, Q., Flores, P., Lankarani, H.M.: A comprehensive survey of the analytical, numerical and experimental methodologies for dynamics of multibody mechanical systems with clearance or imperfect joints. Mech. Mach. Theory. 122, 1–57 (2018). https://doi.org/10.1016/j.mechmachtheory.2017.12.002

    Article  Google Scholar 

  27. Sun, D.Y., Shi, Y., Zhang, B.Q.: Robust optimization of constrained mechanical system with joint clearance and random parameters using multi-objective particle swarm optimization. Struct. Multidiscip. Optim. 58(5), 2073–2084 (2018). https://doi.org/10.1007/s00158-018-2021-4

    Article  MathSciNet  Google Scholar 

  28. Yang, Y.L., Cheng, J.J.R., Zhang, T.Q.: Vector form intrinsic finite element method for planar multibody systems with multiple clearance joints. Nonlinear Dyn. 86(1), 421–440 (2016). https://doi.org/10.1007/s11071-016-2898-7

    Article  MathSciNet  Google Scholar 

  29. Zheng, X.D., Zhang, F., Wang, Q.: Modeling and simulation of planar multibody systems with revolute clearance joints considering stiction based on an LCP method. Mech. Mach. Theory 130, 184–202 (2018). https://doi.org/10.1016/j.mechmachtheory.2018.08.017

    Article  Google Scholar 

  30. Li, L., Zhu, X.J.: Design of compliant revolute joints based on mechanism stiffness matrix through topology optimization using a parameterization level set method. Struct. Multidiscip. Optim. 60(4), 1475–1489 (2019). https://doi.org/10.1007/s00158-019-02278-8

    Article  MathSciNet  Google Scholar 

  31. Varedi, S.M., Daniali, H.M., Dardel, M., Fathi, A.: Optimal dynamic design of a planar slider-crank mechanism with a joint clearance. Mech. Mach. Theory 86, 191–200 (2015). https://doi.org/10.1016/j.mechmachtheory.2014.12.008

    Article  Google Scholar 

  32. Lai, X.M., He, H., Lai, Q.F., Wang, C., Yang, J.H., Zhang, Y., Fang, H.Y., Liao, S.R.: Computational prediction and experimental validation of revolute joint clearance wear in the low-velocity planar mechanism. Mech. Syst. Signal Process. 85, 963–976 (2017). https://doi.org/10.1016/j.ymssp.2016.09.027

    Article  Google Scholar 

  33. Chen, X.L., Gao, W.H., Deng, Y., Wang, Q.: Chaotic characteristic analysis of spatial parallel mechanism with clearance in spherical joint. Nonlinear Dyn. 94(4), 2625–2642 (2018). https://doi.org/10.1007/s11071-018-4513-6

    Article  Google Scholar 

  34. Erkaya, S., Doğan, S., Ulus, Ş: Effects of joint clearance on the dynamics of a partly compliant mechanism: numerical and experimental studies. Mech. Mach. Theory 88, 125–140 (2015). https://doi.org/10.1016/j.mechmachtheory.2015.02.007

    Article  Google Scholar 

  35. Natsiavas, S.: Analytical modeling of discrete mechanical systems involving contact, impact, and friction. Appl. Mech. Rev. 71(5), 050802 (2019). https://doi.org/10.1115/1.4044549

    Article  Google Scholar 

  36. Khan, Z.A., Chacko, V., Nazir, H.: A review of friction models in interacting joints for durability design. Friction. 5, 1–22 (2017). https://doi.org/10.1007/s40544-017-0143-0

    Article  Google Scholar 

  37. Chen, X.L., Jiang, S.A., Deng, Y., Wang, Q.: Dynamics analysis of 2-DOF complex planar mechanical system with joint clearance and flexible links. Nonlinear Dyn. 93(3), 1009–1034 (2018). https://doi.org/10.1007/s11071-018-4242-x

    Article  Google Scholar 

  38. Guo, J.N., He, P., Liu, Z.S., Huang, H.Y.: Investigation of an improved planar revolute clearance joint contact model with rough surface. Tribol. Int. 134, 385–393 (2019). https://doi.org/10.1016/j.triboint.2019.02.019

    Article  Google Scholar 

  39. Zhao, B., Zhou, K., Xie, Y.B.: A new numerical method for planar multibody system with mixed lubricated revolute joint. Int. J. Mech. Sci. 113, 105–119 (2016). https://doi.org/10.1016/j.ijmecsci.2016.04.016

    Article  Google Scholar 

  40. Wang, G.X., Wang, L.: Dynamics investigation of spatial parallel mechanism considering rod flexibility and spherical joint clearance. Mech. Mach. Theory 137, 83–107 (2019). https://doi.org/10.1016/j.mechmachtheory.2019.03.017

    Article  Google Scholar 

  41. Tang, L.L., Liu, J.Y.: Modeling and analysis of sliding joints with clearances in flexible multibody systems. Nonlinear Dyn. 94(4), 2423–2440 (2018). https://doi.org/10.1007/s11071-018-4500-y

    Article  Google Scholar 

  42. Khashaba, U.A., Sebaey, T.A., Selmy, A.I.: Experimental verification of a progressive damage model for composite pinned-joints with different clearances. Int. J. Mech. Sci. 152, 481–491 (2019). https://doi.org/10.1016/j.ijmecsci.2019.01.023

    Article  Google Scholar 

  43. Song, N.N., Peng, H.J., Xu, X.M., Wang, G.: Modeling and simulation of a planar rigid multibody system with multiple revolute clearance joints based on variational inequality. Mech. Mach. Theory 154 (2020). https://doi.org/10.1016/j.mechmachtheory.2020.104053

  44. Sun, D.Y., Zhang, B.Q., Liang, X.F., Shi, Y., Suo, B.: Dynamic analysis of a simplified flexible manipulator with interval joint clearances and random material properties. Nonlinear Dyn. 98(2), 1049–1063 (2019). https://doi.org/10.1007/s11071-019-05248-3

    Article  Google Scholar 

  45. Zhao, B., Zhang, Z.N., Fang, C.C., Dai, X.D., Xie, Y.B.: Modeling and analysis of planar multibody system with mixed lubricated revolute joint. Tribol. Int. 98, 229–241 (2016). https://doi.org/10.1016/j.triboint.2016.02.024

    Article  Google Scholar 

  46. Ma, J., Qian, L.F.: Modeling and simulation of planar multibody systems considering multiple revolute clearance joints. Nonlinear Dyn. 90(3), 1907–1940 (2017). https://doi.org/10.1007/s11071-017-3771-z

    Article  MathSciNet  Google Scholar 

  47. Pi, T., Zhang, Y.Q.: Simulation of planar mechanisms with revolute clearance joints using the multipatch based isogeometric analysis. Comput. Methods Appl. Mech. Eng. 343(1), 453–489 (2019). https://doi.org/10.1016/j.cma.2018.08.039

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 51675281); the Fundamental Research Funds for the Central Universities (Grant No. 30918011101); the Six Talents Peak Project of Jiangsu Province (Grant 2015-JXQC-003).

Funding

This study was funded by the National Natural Science Foundation of China (NSFC); the Fundamental Research Funds for the Central Universities (NRFCU); and the Six Talents Peak Project of Jiangsu Province (STPPJP).

Author information

Authors and Affiliations

Authors

Contributions

Chen developed and tested the robot driver, analyzed the data, and wrote this manuscript. Xu established the characteristic model, conducted the dynamic analysis, and wrote this manuscript. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Gang Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Xu, X. A nonlinear dynamic characteristic modeling method of shift manipulator for robot driver with multiple clearance joints. Nonlinear Dyn 110, 219–236 (2022). https://doi.org/10.1007/s11071-022-07652-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07652-8

Keywords

Navigation