Battaglia, J.L., Le Lay, L., Batsale, J.C., Oustaloup, A., Cois, O.: Heat flux estimation through inverted non integer identification models. Int. J. Therm. Sci. 39(3), 374–389 (2000). https://doi.org/10.1016/S1290-0729(00)00220-9
Article
Google Scholar
Chen, F., Garnier, H., Gilson, M., Zhuan, X.: Frequency domain identification of continuous-time output-error models with time-delay from relay feedback tests. Automatica 98, 180–189 (2018)
MathSciNet
Article
Google Scholar
Cois, O., Oustaloup, A., Poinot, T., Battaglia, J.L.: Fractional state variable filter for system identification by fractional model. In: 6th European Control Conference ECC’01. Porto, Portugal (2001)
Das, S., Sivaramakrishna, M., Das, S., Biswas K.and Goswami, B.: Characterization of a fractional order element realized by dipping a capacitive type probe in polarizable medium. In: Symposium on Fractional Signals and Systems. Lisbon, Portugal (2009)
De Wit, C.: Recursive estimation of the continuous-time process parameters. In: 1986 25th IEEE Conference on Decision and Control, pp. 2016–2020 (1986). https://doi.org/10.1109/CDC.1986.267390
Djouambi, A., Besançon, A.V., Charef, A.: Fractional system identification using recursive algorithms approach. In: 2007 European Control Conference (ECC), pp. 1436–1441 (2007). https://doi.org/10.23919/ECC.2007.7068707
Duhé, J., Victor, S., Melchior, P., Abdelmoumen, Y., Roubertie, F.: Modeling thermal systems with fractional models: human bronchus application. Nonlinear Dyn. 6, 66 (2022)
Google Scholar
Eddine, A., Huard, B., Gabano, J.D., Poinot, T.: Initialization of a fractional order identification algorithm applied for lithium-ion battery modeling in time domain. Commun. Nonlinear Sci. Numer. Simul. 59, 375–386 (2018)
MathSciNet
Article
Google Scholar
Elwakil, A.: Fractional-order circuits and systems: an emerging interdisciplinary research area. IEEE Circuits Syst. Mag. 10(4), 40–50 (2010). https://doi.org/10.1109/MCAS.2010.938637
Article
Google Scholar
Garnier, H., Wang, L.: Identification of Continuous-Time Models from Sampled Data. Springer (2008)
Garrappa, R., Kaslik, E., Popolizio, M.: Evaluation of fractional integrals and derivatives of elementary functions: overview and tutorial. Mathematics (2019). https://doi.org/10.3390/math7050407
Article
Google Scholar
Grünwald, A.: Über begrenzte Derivationen und deren Anwendung. Zeitschrift für Mathematik und Physik 66, 441–480 (1867)
Idiou, D., Charef, A., Djouambi, A., Voda, A.: Parameters and order identification of the fundamental linear fractional systems of commensurate order. In: The Second International Conference on Electrical Engineering and Control Application (ICEECA 2014). Constantine, Algeria (2014)
Ionescu, C., Copot, D., De Keyser, R.: Respiratory impedance model with lumped fractional order diffusion compartment. IFAC Proc. Vol. 46(1), 260–265 (2013). https://doi.org/10.3182/20130204-3-FR-4032.00084. 6th IFAC Workshop on Fractional Differentiation and Its Applications
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, Volume 204 (North-Holland Mathematics Studies). Elsevier, New York (2006)
Krishna, B.: Studies on fractional order differentiators and integrators: a survey. Signal Process. 91(3), 386–426 (2011). https://doi.org/10.1016/j.sigpro.2010.06.022
Article
MATH
Google Scholar
Letnikov, A.: Theory of differentiation of arbitrary order. Matematiceskij Sbornik (Moscou) 3(1), 1–68 (1868). ((Russian))
Google Scholar
Ljung, L.: Analysis of a general recursive prediction error identification algorithm. Automatica 17(1), 89–99 (1981). https://doi.org/10.1016/0005-1098(81)90086-8
Article
MATH
Google Scholar
Ljung, L.: System identification—Theory for the User, 2nd edn. Prentice-Hall, Upper Saddle River (1999)
MATH
Google Scholar
Ljung, L., Chen, T., Mu, B.: A shift in paradigm for system identification. Int. J. Control 93(2), 173–180 (2020). https://doi.org/10.1080/00207179.2019.1578407
MathSciNet
Article
MATH
Google Scholar
Magin, R., Ovadia, M.: Modeling the cardiac tissue electrode interface using fractional calculus. In: 2nd IFAC Workshop on Fractional Differentiation and its Applications, vol. 39(11), pp. 302–307 (2006). https://doi.org/10.3182/20060719-3-PT-4902.00056
Maillet, D., André, S., Batsale, J., Degiovanni, A., Moyne, C.: Thermal Quadrupoles: Solving the Heat Equation Through Integral Transforms. Loyola Symposium Series. Wiley (2000)
Malti, R., Moreau, X., Khemane, F., Oustaloup, A.: Stability and resonance conditions of elementary fractional transfer functions. Automatica 47(11), 2462–2467 (2011). https://doi.org/10.1016/j.automatica.2011.08.029
MathSciNet
Article
MATH
Google Scholar
Malti, R., Sabatier, J., Akçay, H.: Thermal modeling and identification of an aluminium rod using fractional calculus. In: 15th IFAC Symposium on System Identification (SYSID’2009), pp. 958–963. St Malo, France (2009). https://doi.org/10.3182/20090706-3-FR-2004.00159
Matignon, D.: Stability properties for generalized fractional differential systems. ESAIM proceedings–Systèmes Différentiels Fractionnaires - Modèles, Méthodes et Applications, vol. 5 (1998)
Mayoufi, A., Victor, S., Malti, R., Chetoui, M., Aoun, M.: Output error MISO system identification using fractional models. Fract. Calc. Appl. Anal. 5(24), 1601–1618 (2021). https://doi.org/10.1515/fca-2021-0067
MathSciNet
Article
MATH
Google Scholar
McFawn, P., Mitchell, H.: Bronchial compliance and wall structure during development of the immature human and pig lung. Eur. Respir. J. 10(1), 27–34 (1997)
Article
Google Scholar
Mi, W., Zhang, C., Wang, H., Cao, J., Li, C., Yang, L., Guo, F., Wang, X., Yang, T.: Measurement and analysis of the tracheobronchial tree in Chinese population using computed tomography. PLoS ONE 10(4), 1–14 (2015). https://doi.org/10.1371/journal.pone.0123177
Article
Google Scholar
Moze, M., Sabatier, J.: LMI tools for stability analysis of fractional systems. In: 20th ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE’05), pp. 1–9. Long Beach, CA (2005)
Nakagawa, M., Sorimachi, K.: Basic characteristics of a fractance device. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 75, 1814–1819 (1992)
Google Scholar
Narang, A., Shah, S., Chen, T.: Continuous-time model identification of fractional-order models with time delays. IET Control Theory Appl. 5(7), 900–912 (2011). https://doi.org/10.1049/iet-cta.2010.0718
MathSciNet
Article
Google Scholar
Oldham, K., Spanier, J.: The replacement of Fick’s laws by a formulation involving semidifferentiation. J. Electroanal. Chem. Interfac. Electrochem. 26(2–3), 331–341 (1970). https://doi.org/10.1016/S0022-0728(70)80316-3
Article
Google Scholar
Oldham, K., Spanier, J.: The Fractional Calculus—Theory and Applications of Differentiation and Integration to Arbitrary Order. Academic Press, New York (1974)
MATH
Google Scholar
Padilla, A.: Recursive Identification of Continuous-Time Systems with Time-Varying Parameters. Université de Lorraine, Theses (2017)
Pillonetto, G., Dinuzzo, F., Chen, T., De Nicolao, G., Ljung, L.: Kernel methods in system identification, machine learning and function estimation: a survey. Automatica 50(3), 657–682 (2014). https://doi.org/10.1016/j.automatica.2014.01.001
MathSciNet
Article
MATH
Google Scholar
Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Academic Press, San Diego (1999)
MATH
Google Scholar
Rivero, M., Rogosin, S., Tenreiro Machado, J., Trujillo, J.: Stability of fractional order systems. Math. Probl. Eng. 2013, 356215 (2013). https://doi.org/10.1155/2013/356215
MathSciNet
Article
MATH
Google Scholar
Rodrigues, S., Munichandraiah, N., Shukla, A.K.: A review of state of charge indication of batteries by means of A.C. impedance measurements. J. Power Sources 87(1–2), 12–20 (2000). https://doi.org/10.1016/S0378-7753(99)00351-1
Samko, S., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science (1993)
Sommacal, L., Melchior, P., Oustaloup, A., Cabelguen, J.M., Ijspeert, A.: Fractional multi-models of the frog gastrocnemius muscle. J. Vib. Control 14(9–10), 1415–1430 (2008). https://doi.org/10.1177/1077546307087440
Article
MATH
Google Scholar
Sun, X., Ji, J., Ren, B., Xie, C., Yan, D.: Adaptive forgetting factor recursive least square algorithm for online identification of equivalent circuit model parameters of a lithium-ion battery. Energies (2019). https://doi.org/10.3390/en12122242
Article
Google Scholar
Victor, S., Malti, R., Garnier, H., Oustaloup, A.: Parameter and differentiation order estimation in fractional models. Automatica 49(4), 926–935 (2013). https://doi.org/10.1016/j.automatica.2013.01.026
MathSciNet
Article
MATH
Google Scholar
Victor, S., Melchior, P., Malti, R., Oustaloup, A.: Robust motion planning for a heat rod process. J. Nonlinear Dyn. 86(2), 1271–1283 (2016). https://doi.org/10.1007/s11071-016-2963-2
Article
MATH
Google Scholar
Victor, S., Melchior, P., Pellet, M., Oustaloup, A.: Lung thermal transfer system identification with fractional models. IEEE Trans. Control Syst. Technol. 28(1), 172–182 (2020). https://doi.org/10.1109/TCST.2018.2877606
Article
Google Scholar
Victor, S., Mayoufi, A., Malti, R., Chetoui, M., Aoun, M.: System identification of MISO fractional systems: parameter and differentiation order estimation. Automatica 141, 66 (2022). https://doi.org/10.1016/j.automatica.2022.110268
MathSciNet
Article
MATH
Google Scholar
Wang, L., Zhao, W.: System identification: new paradigms, challenges, and opportunities. Acta Autom Sin 39(7), 933–942 (2013). https://doi.org/10.1016/S1874-1029(13)60062-2
Young, P.: Parameter estimation for continuous-time models—a survey. Automatica 17(1), 23–29 (1981)
MathSciNet
Article
Google Scholar
Zeng, C., Liang, S.: Comparative study of discretization zero dynamics behaviors in two multirate cases. Int. J. Control Autom. Syst. 13(4), 831–842 (2015). https://doi.org/10.1007/s12555-014-0115-3
Article
Google Scholar