Skip to main content
Log in

Dynamic output feedback control for fractional-order delayed systems subject to actuator saturation

  • Review
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper addresses the fractional-order uncertain delayed systems with actuator saturation via dynamic output feedback control strategy. The time-varying delay considered in this paper can be possibly unbounded which relaxes the ordinary assumptions. A dynamic output feedback controller is put forward to stabilize the delayed nonlinear fractional-order systems (FOSs). The gain matrices in the controller are obtained through solving linear matrix inequalities (LMIs). The sufficient conditions for the stability of uncertain delayed nonlinear FOSs are proposed by fractional Lyapunov method. Both maximization of the domain of attraction (DOA) and the stabilization of the considered system are ensured which are solved by an optimization problem in terms of LMIs. Furthermore, the case that without delay of nonlinear FOSs using the proposed strategy is demonstrated. Finally, two simulation examples are given to illustrate the effectiveness of the developed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Li, Y., Chen, Y.Q., Podlubny, I.: Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica 45(8), 1965–1969 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Song, S., Zhang, B., Song, X., Zhang, Z.: ’Neuro-Fuzzy-Based adaptive dynamic surface control for fractional-order nonlinear strict-feedback systems with input constraint. IEEE Trans. Syst. Man Cybern. Syst. 99, 1–12 (2019)

    Google Scholar 

  3. Delavari, H., Baleanu, D., Sadati, J.: Stability analysis of Caputo fractional-order nonlinear systems revisited. Nonlinear Dyn. 67(4), 2433–2439 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Lu, J.G., Chen, Y.Q.: Robust stability and stabilization of fractional-order interval systems with the fractional order \(\alpha \): the \(0<\alpha <1\) case. IEEE Trans. Autom. Control 55(1), 152–158 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Li, X., Wen, C., Zou, Y.: Adaptive Backstepping control for fractional-order nonlinear systems with external disturbance and uncertain parameters using smooth control. IEEE Trans. Syst. Man Cybern. Syst. (2020). https://doi.org/10.1109/TSMC.2020.2987335

    Article  Google Scholar 

  6. Ma, Z., Ma, H.J.: Adaptive fuzzy backstepping dynamic surface control of strict-feedback fractional order uncertain nonlinear systems. IEEE Trans. Fuzzy Syst. 28(1), 122–133 (2019)

    Article  Google Scholar 

  7. Liu, L., Liang, D., Liu, C.: Nonlinear state-observer control for projective synchronization of a fractional-order hyperchaotic system. Nonlinear Dyn. 69(4), 1929–1939 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lan, Y., Zhou, Y.: Non-fragile observer-based robust control for a class of fractional-order nonlinear systems. Syst. Control Lett. 62(12), 1143–1150 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gong, P., Lan, W.: Adaptive robust tracking control for uncertain nonlinear fractional-order multi-agent systems with directed topologies. Automatica 92, 92–99 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Su, H., Ye, Y., Chen, X., He, H.: Necessary and sufficient conditions for consensus in fractional-order multiagent systems via sampled data over directed graph. IEEE Trans. Syst. Man Cybern. Syst. 99, 1–11 (2019)

    Google Scholar 

  11. Wang, L., Dong, J.: Adaptive fuzzy consensus tracking control for uncertain fractional-order multi-agent systems with event-triggered input. IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/TFUZZ.2020.3037957

    Article  Google Scholar 

  12. Kwon, O., Ju, H.: Exponential stability of uncertain dynamic systems including state delay. Appl. Math. Lett. 19(9), 901–907 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Alexandrova, I.: On the robustness and estimation of the attraction region for a class of nonlinear time delay systems. Appl. Math. Lett. 106, 106374 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hamamci, S.E.: An algorithm for stabilization of fractional-order time delay systems using fractional-order PID controllers. IEEE Trans. Autom. Control 52(10), 1964–1969 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Yu, W., Li, Y., Wen, G., Yu, X., Cao, J.: Observer design for tracking consensus in second-order multi-agent systems: fractional order less than two. IEEE Trans. Autom. Control 62(2), 894–900 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhang, S., Liu, L., Xue, D.: Nyquist-based stability analysis of non-commensurate fractional-order delay systems. Appl. Math. Comput. 377, 125111 (2020)

    MathSciNet  MATH  Google Scholar 

  17. Du, F., Lu, J.: New criterion for finite-time stability of fractional delay systems. Appl. Math. Lett. 104, 106248 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Du, F., Jia, B.: Finite-time stability of a class of nonlinear fractional delay difference systems. Appl. Math. Lett. 98, 233–239 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gu, Y., Yu, Y., Wang, H.: Synchronization for fractional-order time-delayed memristor-based neural networks with parameter uncertainty. J. Frank. Inst. 353(15), 3657–3684 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Shen, J., Lam, J.: Stability and performance analysis for positive fractional-order systems with time-varying delays. IEEE Trans. Autom. Control 61(9), 2676–2681 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Phat, V., Thanh, N.: New criteria for finite-time stability of nonlinear fractional-order delay systems: a Gronwall inequality approach. Appl. Math. Lett. 83, 169–175 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu, S., Zhou, X., Li, X., et al.: Asymptotical stability of Riemann-Liouville fractional singular systems with multiple time-varying delays. Appl. Math. Lett. 65(1), 32–39 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Chen, B., Chen, J.: Razumikhin-type stability theorems for functional fractional-order differential systems and applications. Appl. Math. Comput. 254, 63–69 (2015)

    MathSciNet  MATH  Google Scholar 

  24. Hua, C., Zhang, T., Li, Y., Guan, X.: Robust output feedback control for fractional order nonlinear systems with time-varying delays. IEEE/CAA J. Automatica Sinica 3(4), 477–482 (2016)

    Article  MathSciNet  Google Scholar 

  25. Chen, L., Li, T., Wu, R., Chen, Y., Liu, Z.: Non-Fragile control for a class of fractional-order uncertain linear systems with time-delay. IET Control Theory Appl. 14(12), 1575–1589 (2020)

    Article  MathSciNet  Google Scholar 

  26. Hu, T., Lin, Z., Chen, B.M.: An analysis and design method for linear systems subject to actuator saturation and disturbance. Automatica 38(2), 351–359 (2002)

    Article  MATH  Google Scholar 

  27. Ahn, H.: Stability and stabilization of fractional-order linear systems subject to input saturation. IEEE Trans. Autom. Control 58(4), 1062–1067 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Alaviyan Shahri, E., Alfi, A., Tenreiro Machado, J.: An extension of estimation of domain of attraction for fractional order linear system subject to saturation control. Appl. Math. Lett. 47, 26–34 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Luo, J.: State-feedback control for fractional-order nonlinear systems subject to input saturation. Math. Problems Eng. 2014, 1–8 (2014)

    MathSciNet  Google Scholar 

  30. Alaviyan Shahri, E.S., Alfi, A., Tenreiro Machado, J.A.: Stability analysis of a class of nonlinear fractional-order systems under control input saturation’’. Int. J. Robust Nonlinear Control 28, 2887–2905 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Alaviyan Shahri, E.S., Alfi, A., Jatm, B.: Lyapunov method for the stability analysis of uncertain fractional-order systems under input saturation. Appl. Math. Modell. 81, 663–672 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sheng, D., Wei, Y., Cheng, S., Wang, Y.: Observer-based adaptive Backstepping control for fractional order systems with input saturation. Isa Trans. 82, 18–29 (2017)

    Article  Google Scholar 

  33. Lin, C., Chen, B., Wang, Q.: Static output feedback stabilization for fractional-order systems in T-S fuzzy models. Neurocomputing 218, 354–358 (2016)

    Article  Google Scholar 

  34. Wei, Y., Tse, P.W., Yao, Z., Wang, Y.: Adaptive Backstepping output feedback control for a class of nonlinear fractional order systems. Nonlinear Dyn. 86(2), 1047–1056 (2016)

  35. Ma, Z., Ma, H.: Reduced-order observer-based adaptive Backstepping control for fractional-order uncertain nonlinear systems. IEEE Trans. Fuzzy Syst. 28(12), 3287–3301 (2019)

    Article  Google Scholar 

  36. Pouya, B., Mahdi, S.: Robust fixed-order dynamic output feedback controller design for fractional-order systems. IET Control Theory Appl. 12(9), 1236–1243 (2018)

    Article  MathSciNet  Google Scholar 

  37. Song, X., Liu, L., Tejado Balsera, I., Guo, H.: Output feedback control for fractional-order Takagi-Sugeno fuzzy systems with unmeasurable premise variables. Trans Inst Meas Control 38(10), 1201–1211 (2016)

    Article  Google Scholar 

  38. Li, H., Yang, G.H.: Dynamic output feedback H\(_\infty \) control for fractional-order linear uncertain systems with actuator faults. J Frank Inst 356(8), 4442–4466 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  39. You, X., Hua, C., Guan, X.: Event-triggered leader-following consensus for nonlinear multiagent systems subject to actuator saturation using dynamic output feedback method. IEEE Trans Autom Control 63(12), 4391–4396 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. Sheng, D., Wei, Y., Cheng, S., Shuai, J.: Adaptive backstepping control for fractional order systems with input saturation. J. Frank. Inst. 354(5), 2245–2268 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  41. He, B., Zhou, H., Kou, C., Chen, Y.: New integral inequalities and asymptotic stability of fractional-order systems with unbounded time delay. Nonlinear Dyn. 94, 1523–1534 (2018)

    Article  Google Scholar 

  42. Aguila-Camacho, N., Duarte-Mermoud, M.A., Gallegos, J.A.: Lyapunov functions for fractional order systems. Commun. Nonlinear Sci. Numer. Simul., 19(9):681-690, 2951-2957 (2014)

  43. Soylemez, M.T., Gokasan, M., Bogosyan, O.S.: Position control of a single-link robot-arm using a multi-loop PI controller. In: Proceedings of 2003 IEEE Conference on Control Applications, vol. 2, pp. 1001–1006, (2003)

  44. Farges, C., Moze, M., Sabatier, J.: Pseudo state feedback stabilization of commensurate fractional order systems. Proceedings of 2009 European Control Conference, (2009)

Download references

Acknowledgements

The authors would like to thank the Associate Editor and the anonymous reviewers for their keen and insightful comments which greatly improved the contents and the presentation of this article significantly.

Funding

This work was partially supported by National Key R & D Program of China (2018YFB1308300), National Natural Science Foundation of China (U20A20187, 61825304), National Defense Basic Scientific Research Project (JCKY2019407D001), Science Fund for Creative Research Groups of Hebei Province (F2020203013). Science and technology development grant of Hebei Province (20311803D, 19011824Z) and National Defence Fundamental Project (2020A130).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changchun Hua.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, J., Hua, C. Dynamic output feedback control for fractional-order delayed systems subject to actuator saturation. Nonlinear Dyn 110, 995–1004 (2022). https://doi.org/10.1007/s11071-022-07622-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07622-0

Keywords

Navigation