Skip to main content
Log in

Revisited chaotic vibrations in dielectric elastomer systems with stiffening

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Dielectric elastomer is a type of soft materials which can deform under applied voltage. Here, irregular vibrations in a circular dielectric elastomer membrane with stiffening under periodic forcing are studied. The stiffening phenomenon can induce fast increases in the potential energies near the limiting stretches, which induces challenges to the numerical simulations. By comparing different numerical strategies, the adaptive step size method with allowable very small step sizes is used to simulate the system. For the system with or without damping, the existence of chaos is then verified through the positive maximum Lyapunov exponent and the fractal structures in the phase plane simultaneously. The local dynamic analysis shows the strong contribution of regions near the limiting stretches to the occurrence of chaos, revealing the important role of the stiffening. For the system with damping, the rich dynamical behaviors accompanying chaos such as the period-doubling route to chaos and the long chaotic transients also provide further consistent supports for the existence of chaos. For the system without damping, chaos region in a parameter plane is located by using different initial conditions, revealing the transitional behaviors from periodic states to chaos. Besides, the chaos is more easily to occur in the system without damping. Thus, the study here is useful to avoid or further handle such complex irregular dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  1. Pelrine, R., Kornbluh, R., Pei, Q., Joseph, J.: High-speed electrically actuated elastomers with strain greater than 100%. Science 287(5454), 836–839 (2000)

    Article  Google Scholar 

  2. O’Halloran, A., O’malley, F., McHugh, P.: A review on dielectric elastomer actuators, technology, applications, and challenges. J. Appl. Phys. 104(7), 9 (2008)

  3. Lu, T., Ma, C., Wang, T.: Mechanics of dielectric elastomer structures: a review. Extreme Mech. Lett. 38, 100752 (2020)

    Article  Google Scholar 

  4. Zhao, Y., Guo, Q., Song, W., Meng, G., Zhang, W.: Design and experimental validation of an annular dielectric elastomer actuator for active vibration isolation. Mech. Syst. Signal Process. 134, 106367 (2019)

    Article  Google Scholar 

  5. Xing, Z., Zhang, J., McCoul, D., Cui, Y., Sun, L., Zhao, J.: A super-lightweight and soft manipulator driven by dielectric elastomers. Soft Rob. 7(4), 512–520 (2020)

    Article  Google Scholar 

  6. Moretti, G., Rosset, S., Vertechy, R., Anderson, I., Fontana, M.: A review of dielectric elastomer generator systems. Adv. Intell. Syst. 2(10), 2000125 (2020)

    Article  Google Scholar 

  7. Righi, M., Moretti, G., Forehand, D., Agostini, L., Vertechy, R., Fontana, M.: A broadbanded pressure differential wave energy converter based on dielectric elastomer generators. Nonlinear Dyn. 105(4), 2861–2876 (2021)

    Article  Google Scholar 

  8. Li, G., Chen, X., Zhou, F., Liang, Y., Xiao, Y., Cao, X., Zhang, Z., Zhang, M., Wu, B., Yin, S., et al.: Self-powered soft robot in the mariana trench. Nature 591(7848), 66–71 (2021)

    Article  Google Scholar 

  9. Chen, F., Zhu, J., Wang, M.Y.: Dynamic electromechanical instability of a dielectric elastomer balloon. EPL (Europhys. Lett.) 112(4), 47003 (2015)

    Article  Google Scholar 

  10. Su, Y.P., Chen, W.Q., Destrade, M.: Tuning the pull-in instability of soft dielectric elastomers through loading protocols. Int. J. Non-Linear Mech. 113, 62–66 (2019)

    Article  Google Scholar 

  11. Keplinger, C., Kaltenbrunner, M., Arnold, N., Bauer, S.: Rontgen’s electrode-free elastomer actuators without electromechanical pull-in instability. Proc. Natl. Acad. Sci. USA 107(10), 4505–4510 (2010)

  12. Huang, J., Li, T., Chiang Foo, C., Zhu, J., Clarke, D.R., Suo, Z.: Giant, voltage-actuated deformation of a dielectric elastomer under dead load. Appl. Phys. Lett. 100(4), 041911 (2012)

    Article  Google Scholar 

  13. Keplinger, C., Li, T., Baumgartner, R., Suo, Z., Bauer, S.: Harnessing snap-through instability in soft dielectrics to achieve giant voltage-triggered deformation. Soft Matter 8(2), 285–288 (2012)

    Article  Google Scholar 

  14. Li, T., Keplinger, C., Baumgartner, R., Bauer, S., Wei, Y., Suo, Z.: Giant voltage-induced deformation in dielectric elastomers near the verge of snap-through instability. J. Mech. Phys. Solids 61(2), 611–628 (2013)

    Article  Google Scholar 

  15. Wang, F., Tongqing, L.U., Wang, T.J.: Nonlinear vibration of dielectric elastomer incorporating strain stiffening. Int. J. Solids Struct. 87, 70–80 (2016)

    Article  Google Scholar 

  16. Li, B., Zhang, J., Chen, H., Li, D.: Voltage-induced pinnacle response in the dynamics of dielectric elastomers. Phys. Rev. E 93, 5 (2016)

    Google Scholar 

  17. Yong, H., He, X., Zhou, Y.: Dynamics of a thick-walled dielectric elastomer spherical shell. Int. J. Eng. Sci. 49(8), 792–800 (2011)

    Article  Google Scholar 

  18. Wang, F., Yuan, C., Lu, T., Wang, T.J.: Anomalous bulging behaviors of a dielectric elastomer balloon under internal pressure and electric actuation. J. Mech. Phys. Solids 102, 1–16 (2017)

    Article  MathSciNet  Google Scholar 

  19. An, S.Q., Zou, H.-L., Deng, Z.-C.: Control instability and enhance performance of a dielectric elastomer balloon with a passive layer. J. Phys. D Appl. Phys. 52(19), 195301 (2019)

    Article  Google Scholar 

  20. Zhang, J., Chen, H.: Voltage-induced beating vibration of a dielectric elastomer membrane. Nonlinear Dyn. 100, 2225–2239 (2020)

    Article  Google Scholar 

  21. Tang, C., Li, B., Liu, L., Ge, S.S., Shui, L., Chen, H.: Nonlinear out-of-plane resonation of a circular dielectric elastomer. Smart Mater. Struct. 29(4), 045003 (2020)

    Article  Google Scholar 

  22. Lu, T., An, L., Li, J., Yuan, C., Wang, T.J.: Electro-mechanical coupling bifurcation and bulging propagation in a cylindrical dielectric elastomer tube. J. Mech. Phys. Solids 85, 160–175 (2015)

    Article  MathSciNet  Google Scholar 

  23. Khurana, A., Sharma, A.K., Joglekar, M.M.: Nonlinear oscillations of electrically driven aniso-visco-hyperelastic dielectric elastomer minimum energy structures. Nonlinear Dyn. 104(3), 1991–2013 (2021)

    Article  Google Scholar 

  24. Zhu, J., Cai, S., Suo, Z.: Resonant behavior of a membrane of a dielectric elastomer. Int. J. Solids Struct. 47(24), 3254–3262 (2010)

    Article  MATH  Google Scholar 

  25. Tang, D., Lim, C.W., Hong, L., Jiang, J., Lai, S.K.: Analytical asymptotic approximations for large amplitude nonlinear free vibration of a dielectric elastomer balloon. Nonlinear Dyn. 88(3), 2255–2264 (2017)

    Article  Google Scholar 

  26. Zhang, J., Chen, H., Li, D.: Method to control dynamic snap-through instability of dielectric elastomers. Phys. Rev. Appl. 6(6), 064012 (2016)

    Article  Google Scholar 

  27. Godaba, H., Zhang, Z.-Q., Gupta, U., Foo, C.C., Zhu, J.: Dynamic pattern of wrinkles in a dielectric elastomer. Soft Matter 13(16), 2942–2951 (2017)

    Article  Google Scholar 

  28. Sheng, J., Chen, H., Liu, L., Zhang, J., Wang, Y., Jia, S.: Temperature effects on the dynamic response of viscoelastic dielectric elastomer. Theor. Appl. Mech. Lett. (2013)

  29. Lv, X., Liu, L., Liu, Y., Leng, J.: Dynamic performance of dielectric elastomer balloon incorporating stiffening and damping effect. Smart Mater. Struct. 27(10), 105306 (2018)

    Article  Google Scholar 

  30. Alibakhshi, A., Heidari, H.: Nonlinear dynamics of dielectric elastomer balloons based on the gent-gent hyperelastic model. Eur. J. Mech. A Solids 82, 103986 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. Dai, H., Zou, J., Wang, L.: Effect of initial stretch ratio on the electromechanical responses of dielectric elastomer actuators. Appl. Phys. A Mater. Sci. Process. 122, 5 (2016)

    Article  Google Scholar 

  32. Heidari, H., Alibakhshi, A., Azarboni, H.R.: Chaotic motion of a parametrically excited dielectric elastomer. Int. J. Appl. Mech. 12, 3 (2020)

    Article  Google Scholar 

  33. Vatanjou, H., Hojjat, Y., Karafi, M.: Nonlinear dynamic analysis of dielectric elastomer minimum energy structures. Appl. Phys. A Mater. Sci. Process. 125, 9 (2019)

    Article  Google Scholar 

  34. Ott, E.: Chaos in Dynamical Systems, 2nd edn. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  35. Ghayesh, M.H., Farokhi, H.: Chaotic motion of a parametrically excited microbeam. Int. J. Eng. Sci. 96, 34–45 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Gupta, U., Godaba, H., Zhao, Z., Chui, C.K., Zhu, J.: Tunable force/displacement of a vibration shaker driven by a dielectric elastomer actuator. Extreme Mech. Lett. 2(1), 72–77 (2015)

    Article  Google Scholar 

  37. Gent, A.N.: A new constitutive relation for rubber. Rubber Chem. Technol. 69(1), 59–61 (1996)

    Article  Google Scholar 

  38. Chapra, S.C., et al.: Applied Numerical Methods with MATLAB for Engineers and Scientists. McGraw-Hill Higher Education, New York (2008)

    Google Scholar 

  39. Lai, Y.-C., Tél, T.: Transient Chaos: Complex Dynamics on Finite Time Scales, vol. 173. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  40. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Physica D 16(3), 285–317 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zou, H.L., Li, M., Lai, C.H., Lai, Y.C.: Origin of chaotic transients in excitatory pulse-coupled networks. Phys. Rev. E 86(6), 066214 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (11972290), as well as the Natural Science Foundation of Shaanxi Province of China (2020JM-105).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Lin Zou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, HL., Deng, ZC. & Zhou, H. Revisited chaotic vibrations in dielectric elastomer systems with stiffening. Nonlinear Dyn 110, 55–67 (2022). https://doi.org/10.1007/s11071-022-07617-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07617-x

Keywords

Navigation