Skip to main content
Log in

Robot dynamic calibration on current level: modeling, identification and applications

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Dynamic model calibration is an important issue and has broad applications in robotics. However, most of the previous works only focus on the robot dynamic calibration on torque level; that is, the identified parameters can predict the joint torques of robot. Unfortunately, little attention has been paid to the robot dynamic calibration on current level; that is, the identified parameters can predict the motor currents of robot. In order to address this problem, the main contribution of this article is to propose a systematic framework for robot dynamic calibration on current level, which includes modeling, identification and its applications. To the best of the authors’ knowledge, it is the first systematic work on the robot dynamic calibration on current level. Specifically, a novel dynamic identification model on current level is firstly derived. Then, an identification method based on iterations is proposed to identify the dynamic parameters on current level. Afterward, two applications based on the identification results on current level are explored. One application is to use the current-level identification results for identifying joint drive gains accurately. The other application is to use the current-level identification results to compute current residuals for robot collision detection. The advantage of the current residuals is to contain less cumulative errors. Finally, the proposed theories are validated by various experiments on the UR10 robot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding authors on reasonable request.

References

  1. Rauscher, M., Kimmel, M., Hirche, S.: Constrained robot control using control barrier functions. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 279–285 (2016)

  2. Gucwa, K.J., Cheng, H.H.: Robosim: a simulation environment for programming virtual robots. Eng. Comput. 34(3), 475–485 (2018)

    Article  Google Scholar 

  3. Haddadin, S., De Luca, A., Albu-Schäffer, A.: Robot collisions: a survey on detection, isolation, and identification. IEEE Trans. Robot. 33(6), 1292–1312 (2017)

    Article  Google Scholar 

  4. Schumacher, M., Wojtusch, J., Beckerle, P., von Stryk, O.: An introductory review of active compliant control. Robot. Auton. Syst. 119, 185–200 (2019)

    Article  Google Scholar 

  5. Jun, W., Wang, J., You, Z.: An overview of dynamic parameter identification of robots. Robot. Comput.-Integr. Manuf. 26(5), 414–419 (2010)

    Article  MathSciNet  Google Scholar 

  6. Wang, H., Ren, W., Cheah, C.C., Xie, Y., Lyu, S.: Dynamic modularity approach to adaptive control of robotic systems with closed architecture. IEEE Trans. Autom. Control 65(6), 2760–2767 (2019)

    Article  MathSciNet  Google Scholar 

  7. Wu, W.: Dc motor parameter identification using speed step responses. Mod. Simul. Eng., 2012 (2012)

  8. Gautier, M., Briot, S.: Global identification of joint drive gains and dynamic parameters of robots. J. Dyn. Syst. Meas. Control-Trans. ASME 136(5), 051025 (2014)

    Article  Google Scholar 

  9. Gautier, M., Vandanjon, P.O., Presse, C.: Identification of inertial and drive gain parameters of robots. In: Proceedings of the IEEE Conference on Decision and Control, vol. 4, pp. 3764–3769 (1994)

  10. Gautier, M., Briot, S.: New method for global identification of the joint drive gains of robots using a known inertial payload. In: Proceedings of the IEEE Conference on Decision and Control, pp. 1393–1398 (2011)

  11. Gautier, M., Poignet, P.: Extended kalman filtering and weighted least squares dynamic identification of robot. Control Eng. Pract. 9(12), 1361–1372 (2001)

    Article  Google Scholar 

  12. Gautier, M., Briot, S.: New method for global identification of the joint drive gains of robots using a known payload mass. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3728–3733 (2011)

  13. Jubien, A., Gautier, M.: Global identification of spring balancer, dynamic parameters and drive gains of heavy industrial robots. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1355–1360 (2013)

  14. Hollerbach, J., Khalil, W., Gautier, M.: Model identification. In: Springer Handbook of Robotics, pp. 113–138 (2016)

  15. Gaz, C., Magrini, E., De Luca, A.: A model-based residual approach for human-robot collaboration during manual polishing operations. Mechatronics 55, 234–247 (2018)

    Article  Google Scholar 

  16. Han, Y., Jianhua, W., Liu, C., Xiong, Z.: An iterative approach for accurate dynamic model identification of industrial robots. IEEE Trans. Robot. 36(5), 1577–1594 (2020)

    Article  Google Scholar 

  17. Stürz, Y.R., Affolter, L.M., Smith, R.S.: Parameter identification of the kuka lbr iiwa robot including constraints on physical feasibility. IFAC-PapersOnLine 50(1), 6863–6868 (2017)

    Article  Google Scholar 

  18. Atkeson, C.G., An, C.H., Hollerbach, J.M.: Estimation of inertial parameters of manipulator loads and links. Int. J. Robot. Res. 5(3), 101–119 (1986)

    Article  Google Scholar 

  19. Gautier, M., Khalil, W.: Direct calculation of minimum set of inertial parameters of serial robots. IEEE Trans. Robot. Autom. 6(3), 368–373 (1990)

    Article  Google Scholar 

  20. Khalil, W., Bennis, F.: Comments on direct calculation of minimum set of inertial parameters of serial robots. IEEE Trans. Robot. Autom. 10(1), 78–79 (1994)

    Article  Google Scholar 

  21. Zak, G., Benhabib, B., Fenton, R.G., Saban, I.: Application of the weighted least squares parameter estimation method to the robot calibration. J. Mech. Des. 116, 890–893 (1994)

    Article  Google Scholar 

  22. Swevers, J., Ganseman, C., Tukel, D.B., De Schutter, J., Van Brussel, H.: Optimal robot excitation and identification. IEEE Trans. Robot. Autom. 13(5), 730–740 (1997)

    Article  Google Scholar 

  23. Janot, A., Vandanjon, P.-O., Gautier, M.: Using robust regressions and residual analysis to verify the reliability of ls estimation: application in robotics. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1962–1967 (2009)

  24. Swevers, J., Verdonck, W., De Schutter, J.: Dynamic model identification for industrial robots. IEEE Control Syst. Mag. 27(5), 58–71 (2007)

    Article  MathSciNet  Google Scholar 

  25. Bahloul, A., Tliba, S., Chitour, Y.: Dynamic parameters identification of an industrial robot with and without payload. IFAC-PapersOnline 51(15), 443–448 (2018)

    Article  Google Scholar 

  26. Gaz, C., Cognetti, M., Oliva, A., Giordano, P.R., De Luca, A.: Dynamic identification of the franka emika panda robot with retrieval of feasible parameters using penalty-based optimization. IEEE Robot. Autom. Lett. 4(4), 4147–4154 (2019)

    Article  Google Scholar 

  27. Lee, T., Wensing, P.M., Park, F.C.: Geometric robot dynamic identification: a convex programming approach. IEEE Trans. Robot. 36(2), 348–365 (2019)

    Article  Google Scholar 

  28. Xu, T., Fan, J., Chen, Y., Ng, X., Ang, M.H., Fang, Q., Zhu, Y., Zhao, J.: Dynamic identification of the kuka lbr iiwa robot with retrieval of physical parameters using global optimization. IEEE Access 8, 108018–108031 (2020)

    Article  Google Scholar 

  29. Kwon, J., Choi, K., Frank, C.P.: Kinodynamic model identification: A unified geometric approach. IEEE Trans. Robot 37(4), 1100–1114 (2021)

    Article  Google Scholar 

  30. Sousa, C.D., Cortesao, R.: Physical feasibility of robot base inertial parameter identification: a linear matrix inequality approach. Int. J. Robot. Res. 33(6), 931–944 (2014)

    Article  Google Scholar 

  31. Gaz, C., Flacco, F., De Luca, A.: Extracting feasible robot parameters from dynamic coefficients using nonlinear optimization methods. In: Proceedings of International Conference on Robotics and Automation, pp. 2075–2081 (2016)

  32. Traversaro, S., Brossette, S., Escande, A., Nori, F.: Identification of fully physical consistent inertial parameters using optimization on manifolds. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5446–5451 (2016)

  33. Wensing, P.M., Kim, S., Slotine, J.-J.E.: Linear matrix inequalities for physically consistent inertial parameter identification: a statistical perspective on the mass distribution. IEEE Robot. Autom. Lett. 3(1), 60–67 (2017)

  34. Sousa, C.D., Cortesao, R.: Inertia tensor properties in robot dynamics identification: a linear matrix inequality approach. IEEE/ASME Trans. Mech. 24(1), 406–411 (2019)

  35. Farhat, N., Mata, V., Page, A., Valero, F.: Identification of dynamic parameters of a 3-dof rps parallel manipulator. Mech. Mach. Theory 43(1), 1–17 (2008)

    Article  Google Scholar 

  36. Khalil, W., Dombre, E.: Modeling, Identification and Control of Robots, pp. 291–311. Butterworth-Heinemann, London (2004)

    Google Scholar 

  37. Takakura, S., Murakami, T., Ohnishi, K.: An approach to collision detection and recovery motion in industrial robot. In: Proceedings of IECON, pp. 421–426 (1989)

  38. Lindvig, A., P..: Sdu robotics / ur_rtde. https://gitlab.com/sdurobotics/ur_rtde. Accessed July 17 (2021)

  39. Venture, G., Ayusawa, K., Nakamura, Y.: A numerical method for choosing motions with optimal excitation properties for identification of biped dynamics-an application to human. In: Proceedings of IEEE International Conference Robotics Automation, pp. 1226–1231. IEEE (2009)

  40. Swevers, J., Verdonck, W., Naumer, B., Pieters, S., Biber, E.: An experimental robot load identification method for industrial application. Int. J. Robot. Res. 21(8), 701–712 (2002)

    Article  Google Scholar 

  41. Nakanishi, J., Cory, R., Mistry, M., Peters, J., Schaal, S.: Operational space control: a theoretical and empirical comparison. Int. J. Robot. Res. 27(6), 737–757 (2008)

    Article  Google Scholar 

  42. Khalil, W., Gautier, M., Lemoine, P.: Identification of the payload inertial parameters of industrial manipulators. In: Proceedings of International Conference on Robotics and Automation, pp. 4943–4948. IEEE (2007)

Download references

Acknowledgements

The authors would like to thank the reviewers for their professional comments on the improvement of this article.

Funding

This work was supported by the National Key Research and Development Plan [Grant Number 2018YFB1306901] and the National Natural Science Foundation of China [Grant Number 92048301].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jizhuang Fan, Yanhe Zhu or Jie Zhao.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, T., Fan, J., Fang, Q. et al. Robot dynamic calibration on current level: modeling, identification and applications. Nonlinear Dyn 109, 2595–2613 (2022). https://doi.org/10.1007/s11071-022-07579-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07579-0

Keywords

Navigation