Skip to main content
Log in

Multistable dynamics in a Hopfield neural network under electromagnetic radiation and dual bias currents

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates a Hopfield neural network under the simulation of external electromagnetic radiation and dual bias currents, in which the fluctuation of magnetic flux across the neuron membrane is used to emulate the influence of electromagnetic radiation. Utilizing conventional analytical methods, the basic properties of the proposed Hopfield neural network are discussed. Due to the addition of electromagnetic radiation and dual bias currents, the Hopfield neural network shows high sensitivity to system parameters and initial conditions. The proposed Hopfield neural network possesses multistability with periodic attractor, quasi-periodic attractor, chaotic attractor and transient chaotic attractor, and all of the attractors are hidden attractors because there is no equilibrium point in the system. In particular, when the neuron membrane magnetic flux is different, the system can present transient chaos with different chaotic times. More interestingly, with the change of system parameters, the proposed Hopfield neural network can exhibit parallel bifurcation behaviors. Finally, the Multisim simulation and hardware experiment results based on discrete electronic components are conducted to support the numerical ones. These results could give useful information to the study of nonlinear dynamic characteristics of the Hopfield neural network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on a reasonable request.

References

  1. Volgin, L., Taylor, D., Bright, J.-A., Lin, M.-H.: Validation of a neural network approach for STR typing to replace human reading. Forensic Sci. Int. Genet. 55(11), 102951 (2021)

    Google Scholar 

  2. Xu, Y., Ma, J., Zhan, X., Yang, L., Jia, Y.: Temperature effect on memristive ion channels. Cogn. Neurodyn. 13(6), 601–611 (2019)

    Google Scholar 

  3. Li, C., Liu, S., Wang, Z.: Classifying interictal epileptiform activities in intracranial EEG using complex-valued convolutional neural network. Int. J. Psychophysiol. 168(S), S104–S105 (2021)

    Google Scholar 

  4. Chua, L.O.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)

    Google Scholar 

  5. Wan, Q., Zhou, Z., Ji, W., Fei, Y., Wang, C.: Dynamic analysis and circuit realization of a novel no-equilibrium 5D memristive hyperchaotic system with hidden extreme multistability. Complexity (2020). https://doi.org/10.1155/2020/7106861

    Article  Google Scholar 

  6. Li, Q., Tang, S., Zeng, H., Zhou, T.: On hyperchaos in a small memristive neural network. Nonlinear Dyn. 78(2), 1087–1099 (2014)

    MATH  Google Scholar 

  7. Chen, C., Chen, J., Bao, H., Chen, M., Bao, B.: Coexisting multi-stable patterns in memristor synapse-coupled Hopfield neural network with two neurons. Nonlinear Dyn. 95(4), 3385–3399 (2019)

    MATH  Google Scholar 

  8. Tang, Z., Chen, Y., Wang, Z., Hu, R., Wu, E.Q.: Non-spike timing-dependent plasticity learning mechanism for memristive neural networks. Appl. Intell. 51(1), 1–12 (2021)

    Google Scholar 

  9. Xiu, C., Zhou, R., Liu, Y.: New chaotic memristive cellular neural network and its application in secure communication system. Chaos, Solitons Fractals 141(12), 110316 (2020)

    MathSciNet  MATH  Google Scholar 

  10. Zhang, W., Qi, J.: Synchronization of coupled memristive inertial delayed neural networks with impulse and intermittent control. Neural Comput. Appl. 33(6), 1–12 (2020)

    MathSciNet  Google Scholar 

  11. Cao, Y., Jiang, W., Wang, J.: Anti-synchronization of delayed memristive neural networks with leakage term and reaction-diffusion terms. Knowl.-Based Syst. 233(12), 107539 (2021)

    Google Scholar 

  12. Liu, Y., Sun, Z., Yang, X., Wei, X.: Dynamical robustness and firing modes in multilayer memristive neural networks of nonidentical neurons. Appl. Math. Comput. 409(11), 126384 (2021)

    MathSciNet  MATH  Google Scholar 

  13. Lin, H., Wang, C., Deng, Q., Cong, Xu., Deng, Z., Zhou, C.: Review on chaotic dynamics of memristive neuron and neural network. Nonlinear Dyn. 106(1), 959–973 (2021)

    Google Scholar 

  14. Rosa, M.L., Rabinovich, M.I., Huerta, R., Abarbanel, H., Fortuna, L.: Slow regularization through chaotic oscillation transfer in an unidirectional chain of hindmarsh-rose models. Phys. Lett. A 266(1), 88–93 (2000)

    Google Scholar 

  15. Hopfield, J.J.: Neurons with graded response have collective computational properties like those of two-state neurons. PNAS 81(10), 3088–3092 (1984)

    MATH  Google Scholar 

  16. Yang, L., Yu, D., Hu, Y., Yu, S.S., Ye, Z.: Dynamic behaviors of hyperbolic-type memristor-based Hopfield neural network considering synaptic crosstalk. Chaos 30(3), 033108 (2020)

    MathSciNet  MATH  Google Scholar 

  17. Njitacke, Z.T., Kengne, J., Fotsin, H.B.: A plethora of behaviors in a memristor based Hopfield neural networks (HNNs). Int. J. Dyn. Control 7(1), 36–52 (2019)

    MathSciNet  Google Scholar 

  18. Njitacke, Z.T., Kengne, J., Fotsin, H.B.: Coexistence of multiple stable states and bursting oscillations in a 4D Hopfield neural network. Circuits Syst. Signal Process. 39(7), 3424–3444 (2020)

    MATH  Google Scholar 

  19. Bao, B., Qian, H., Wang, J., Xu, Q., Chen, M., Wu, H., Yu, Y.: Numerical analyses and experimental validations of coexisting multiple attractors in Hopfield neural network. Nonlinear Dyn. 90(4), 2359–2369 (2017)

    MathSciNet  Google Scholar 

  20. Rech, P.C.: Chaos and hyperchaos in a Hopfield neural network. Neurocomputing 74(17), 3361–3364 (2011)

    Google Scholar 

  21. Danca, M.-F., Kuznetsov, N.: Hidden chaotic sets in a Hopfield neural system. Chaos Solitons & Fractals 103(10), 144–150 (2017)

    MathSciNet  MATH  Google Scholar 

  22. Bao, B., Chen, C., Bao, H., Zhang, X., Xu, Q., Chen, M.: Dynamical effects of neuron activation gradient on Hopfield neural network: numerical analyses and hardware experiments. Int. J. Bifurc. Chaos 29(4), 1930010 (2019)

    MathSciNet  MATH  Google Scholar 

  23. Isaac, S.D., Njitacke, Z.T., Kengne, J.: Effects of low and high neuron activation gradients on the dynamics of a simple 3D Hopfield neural network. Int. J. Bifurc. Chaos 30(11), 2050159 (2020)

    MathSciNet  MATH  Google Scholar 

  24. Wang, H., Yu, Y., Wen, G., Zhang, S., Yu, J.: Global stability analysis of fractional-order Hopfield neural networks with time delay. Neurocomputing 154(4), 15–23 (2015)

    Google Scholar 

  25. Aouiti, C., Miaadi, F.: Pullback attractor for neutral Hopfield neural networks with time delay in the leakage term and mixed time delays. Neural Comput. Appl. 31(8), 4113–4122 (2019)

    Google Scholar 

  26. Hu, X., Liu, C., Liu, L., Ni, J., Yao, Y.: Chaotic dynamics in a neural network under electromagnetic radiation. Nonlinear Dyn. 91(3), 1541–1554 (2018)

    Google Scholar 

  27. Kwan, P., Brodie, M.J.: Early identification of refractory epilepsy. N. Engl. J. Med. 342(5), 314–319 (2000)

    Google Scholar 

  28. Panahi, S., Aram, Z., Jafari, S., Ma, J.: Modeling of epilepsy based on chaotic artificial neural network. Chaos, Solitons Fractals 105(12), 150–156 (2017)

    MathSciNet  Google Scholar 

  29. Lin, H., Wang, C.: Influences of electromagnetic radiation distribution on chaotic dynamics of a neural network. Appl. Math. Comput. 369(3), 124840 (2020)

    MathSciNet  MATH  Google Scholar 

  30. Sandyk, R., Anninos, P.A., Tsagas, N., Derpapas, K.: Magnetic fields in the treatment of Parkinson’s disease. Int. J. Neurosci. 63(1–2), 141–150 (1992)

    Google Scholar 

  31. Sandyk, R.: Alzheimer’s disease: improvement of visual memory and visuoconstructive performance by treatment with picotesla range magnetic fields. Int. J. Neurosci. 76(3–4), 185–225 (1994)

    Google Scholar 

  32. Allehiany, F.M., Mahmoud, E.E., Jahanzaib, L.S., Trikha, P., Alotaibi, H.: Chaos control and analysis of fractional order neural network under electromagnetic radiation. Results Phys. 21(11), 103786 (2021)

    Google Scholar 

  33. Yu, F., Zhang, Z., Shen, H., Huang, Y., Cai, S., Jin, J., Du, S.: Design and FPGA implementation of a pseudo-random number generator based on a Hopfield neural network under electromagnetic radiation. Front. Phys. 9(6), 690651 (2021)

    Google Scholar 

  34. Yu, F., Zhang, Z., Shen, H., Huang, Y., Cai, S., Du, S.: FPGA implementation and image encryption application of a new PRNG based on a memristive Hopfield neural network with a special activation gradient. Chin. Phys. B 31(2), 020505 (2022)

    Google Scholar 

  35. Toomey, E., Segall, K., Berggren, K.K.: Design of a power efficient artificial neuron using superconducting nanowires. Front. Neurosci 13(9), 933 (2019)

    Google Scholar 

  36. Hsu, W.-M., Kastner, D.B., Baccus, S.A., Sharpee, T.O.: How inhibitory neurons increase information transmission under threshold modulation. Cell Rep. 35(8), 109158 (2021)

    Google Scholar 

  37. Nik, H.S., Effati, S., Saberi-Nadjafi, J.: Ultimate bound sets of a hyperchaotic system and its application in chaos synchronization. Complexity 20(4), 30–44 (2015)

    MathSciNet  MATH  Google Scholar 

  38. Bocheng, B., Qian, H., Xu, Q., Chen, M., Wang, J., Yu, Y.: Coexisting behaviors of asymmetric attractors in hyperbolic-type memristor based Hopfield neural network. Front. Comput. Neurosci. 11(8), 1–14 (2017)

    Google Scholar 

  39. Lin, H., Wang, C., Tan, Y.: Hidden extreme multistability with hyperchaos and transient chaos in a Hopfield neural network affected by electromagnetic radiation. Nonlinear Dyn. 99(4), 2369–2386 (2020)

    Google Scholar 

  40. Chowdhury, S.N., Ghosh, D.: Hidden attractors: a new chaotic system without equilibria. Eur. Phys. J. Spec. Top. 229(6–7), 1299–1308 (2020)

    Google Scholar 

  41. Tamás, T.: The joy of transient chaos. Chaos 25(9), 097619 (2015)

    MathSciNet  Google Scholar 

  42. Kamdoum Tamba, V., Feudjio, E.R., Kapche Tagne, F., Noumbissie Fankam, J., Fotsin, H.B.: Crisis event, hysteretic dynamics inducing coexistence of attractors and transient chaos in an autonomous RC hyperjerk like-chaotic circuit with cubic nonlinearity. Eur. Phys. J. Spec. Top. 229(6–7), 1189–1210 (2020)

    Google Scholar 

  43. Njitacke, Z.T., Kengne, J., Fonzin Fozin, T., Leutcha, B.P., Fotsin, H.B.: Dynamical analysis of a novel 4-neurons based Hopfield neural network: emergences of antimonotonicity and coexistence of multiple stable states. Int. J. Dyn. Control 7(3), 823–841 (2019)

    MathSciNet  Google Scholar 

  44. Njitacke, Z.T., Isaac, S.D., Kengne, J., Nguomkam Negou, A., Leutcho, G.D.: Extremely rich dynamics from hyperchaotic Hopfield neural network: hysteretic dynamics, parallel bifurcation branches, coexistence of multiple stable states and its analog circuit implementation. Eur. Phys. J. Spec. Top. 229(6–7), 1133–1154 (2020)

    Google Scholar 

  45. Kengne, J., Njikam, S.M., Folifack Signing, V.R.: A plethora of coexisting strange attractors in a simple jerk system with hyperbolic tangent nonlinearity. Chaos, Solitons & Fractals 106(1), 201–213 (2018)

    MathSciNet  MATH  Google Scholar 

  46. Wu, F., Ma, J., Zhang, G.: A new neuron model under electromagnetic field. Appl. Math. Comput. 347(4), 590–599 (2019)

    MathSciNet  MATH  Google Scholar 

  47. Bucolo, M., Buscarino, A., Famoso, C., Fortuna, L., Gagliano, S.: Imperfections in integrated devices allow the emergence of unexpected strange attractors in electronic circuits. IEEE Access 9, 29573–29583 (2021)

    Google Scholar 

  48. Zhang, P., Tang, W., Zhang, J.: Dynamic analysis of unstable Hopfield networks. Nonlinear Dyn. 61(3), 399–406 (2010)

    MathSciNet  MATH  Google Scholar 

  49. Duan, S., Liao, X.: An electronic implementation for Liao’s chaotic delayed neuron model with non-monotonous activation function. Phys. Lett. A 369(1–2), 37–43 (2007)

    Google Scholar 

  50. Duan, S., Wang, L.: A novel delayed chaotic neural model and its circuitry implementation. Comput. Math. Appl. 57(11–12), 1736–1742 (2008)

    MATH  Google Scholar 

  51. Xu, Q., Song, Z., Qian, H., Chen, M., Wu, P., Bao, B.: Numerical analyses and breadboard experiments of twin attractors in two-neuron-based non-autonomous Hopfield neural network. Eur. Phys. J. Spec. Top. 227(7–9), 777–786 (2018)

    Google Scholar 

  52. Xu, Q., Song, Z., Bao, H., Chen, M., Bao, B.: Two-neuron-based non-autonomous memristive Hopfield neural network: numerical analyses and hardware experiments. AEUE Int. J. Electron. Commun. 96(11), 66–74 (2018)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their constructive comments and insightful suggestions.

Funding

This work is supported by the National Natural Science Foundation of China (Grant No. 61901169) and the Natural Science Foundation of Hunan Province, China (Grant No. 2019JJ40190).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiuzhen Wan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, Q., Yan, Z., Li, F. et al. Multistable dynamics in a Hopfield neural network under electromagnetic radiation and dual bias currents. Nonlinear Dyn 109, 2085–2101 (2022). https://doi.org/10.1007/s11071-022-07544-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07544-x

Keywords

Navigation