Skip to main content
Log in

Complex excitations for the derivative nonlinear Schrödinger equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The Darboux transformation (DT) formulae for the derivative nonlinear Schrödinger (DNLS) equation are expressed in concise forms, from which the multi-solitons, n-periodic solutions, higher-order hybrid-pattern solitons and some mixed solutions are obtained. These complex excitations can be constructed thanks to more general semi-degenerate DTs. Even the nondegenerate N-fold DT with a zero seed can generate complicated n-periodic solutions. It is proved that the solution q[N] at the origin depends only on the summation of the spectral parameters. We find the maximum amplitudes of several classes of the wave solutions are determined by the summation. Many interesting phenomena are discovered from these new solutions. For instance, the interactions between n-periodic waves produce peaks with different amplitudes and sizes. A soliton on a single-periodic wave background shares a similar feature as a breather due to the interference of the periodic background. In addition, the results are extended to the reverse-space-time DNLS equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

All the data generated or analyzed during this study are included in this published article.

References

  1. Rogister, A.: Parallel propagation of nonlinear low frequency waves in high-\(\beta \) plasma. Phys. Fluids 14, 2733–2739 (1971)

    Article  Google Scholar 

  2. Mjølhus, E.: On the modulational instability of hydromagnetic waves parallel to the magnetic field. J. Plasma Phys. 16, 321–334 (1976)

    Article  Google Scholar 

  3. Mio, K., Ogino, T., Minami, K., Takeda, S.: Modified nonlinear Schrödinger equation for Alfvén waves propagating along the magnetic field in cold plasmas. J. Phys. Soc. Jpn. 41(1), 265–271 (1976)

    Article  Google Scholar 

  4. Ichikawa, Y.H., Watanabe, S.: Solitons, envelope solitons in collisionless plasmas. J. Phys. Colloques 38, 15–26 (1977)

    Article  Google Scholar 

  5. Spatschek, K.H., Shukla, P.K., Yu, M.Y.: Filamentation of lower-hybrid cones. Nucl. Fusion 18(2), 290 (1978)

    Article  Google Scholar 

  6. Ichikawa, Y., Konno, K., Wadati, M., Sanuki, H.: Spiky soliton in circular polarized Alfvén wave. J. Phys. Soc. Jpn. 48, 279–286 (1980)

    Article  Google Scholar 

  7. Chen, X.J., Lam, W.K.: Inverse scattering transform for the derivative nonlinear Schrödinger equation with nonvanishing boundary conditions. Phys. Rev. E 69, 066604 (2004)

    Article  MathSciNet  Google Scholar 

  8. Kamchatnov, A.M., Darmanyan, S.A., Lederer, F.: Formation of solitons on the sharp front of the pulse in an optical fiber. Phys. Lett. A 245(3–4), 259–264 (1998)

    Article  Google Scholar 

  9. Ruderman, M.S.: DNLS equation for large-amplitude solitons propagating in an arbitrary direction in a high-\(\beta \) hall plasma. J. Plasma Phys. 67, 271–276 (2002)

    Article  Google Scholar 

  10. Tzoar, N., Jain, M.: Self-phase modulation in long-geometry optical waveguide. Phys. Rev. A 23, 1266–1270 (1981)

    Article  Google Scholar 

  11. Anderson, D., Lisak, M.: Nonlinear asymmetric self-phase modulation and self-steepening of pulses in long optical wave guides. Phys. Rev. A 27, 1393–1398 (1983)

    Article  Google Scholar 

  12. Kaup, D.J., Newell, A.C.: An exact solution for a derivative nonlinear Schrödinger equation. J. Math. Phys. 19(4), 798–801 (1978)

    Article  Google Scholar 

  13. Imai, K.J.: Generlization of Kaup-Newell inverse scattering formulation and Darboux transformation. J. Phys. Soc. Jpn. 68, 355–359 (1999)

    Article  Google Scholar 

  14. Xu, S.W., He, J.S., Wang, L.H.: The Darboux transformation of the derivative nonlinear Schrödinger equation. J. Phys. A-Math. Theor. 44, 6629–6636 (2011)

    Google Scholar 

  15. Guo, B.L., Ling, L.M., Liu, Q.P.: High-order solutions and generalized Darboux transformations of derivative nonlinear Schrödinger equations. Stud. Appl. Math. 130, 317–344 (2012)

    Article  Google Scholar 

  16. Zhang, R.F., Bilige, S.: Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to p-gBKP equation. Nonlinear Dyn. 95, 3041–3048 (2019)

    Article  Google Scholar 

  17. Zhang, R.F., Li, M.C., Yin, H.M.: Rogue wave solutions and the bright and dark solitons of the (3+1)-dimensional Jimbo-Miwa equation. Nonlinear Dyn. 103, 1071–1079 (2021)

    Article  Google Scholar 

  18. Zhang, R.F., Li, M.C., Gan, J.Y., Li, Q., Lan, Z.Z.: Novel trial functions and rogue waves of generalized breaking soliton equation via bilinear neural network method. Chaos, Soliton. Fract., 154, 111692 (2022)

    Article  MathSciNet  Google Scholar 

  19. Zabusky, N.J., Kruskal, M.D.: Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240–243 (1965)

    Article  Google Scholar 

  20. Nakamura, A., Chen, H.H.: Multi-soliton solutions of a derivative nonlinear schrödinger equation. J. Phys. Soc. Jpn. 49, 813–816 (1980)

    Article  Google Scholar 

  21. Kamchatnov, A.M.: On improving the effectiveness of periodic solutions of the NLS and DNLS equations. J. Phys. A:Math. Gen 23, 2945–2960 (1990)

    Article  MathSciNet  Google Scholar 

  22. Xu, T., Chen, Y.: Mixed interactions of localized waves in the three-component coupled derivative nonlinear Schrödinger equations. Nonlinear Dyn. 92, 2133–2142 (2018)

    Article  Google Scholar 

  23. Nye, J.F., Wright, F.J.: Natural focussing and fine structure of light: caustics and wave dislocations. Am. J. Phys. 68(8), 776–776 (2000)

    Article  Google Scholar 

  24. Karjanto, N., Groesen, E.V.: Note on wavefront dislocation in surface water waves. Phys. Lett. A 371(3), 173–179 (2007)

    Article  Google Scholar 

  25. Akhmediev, N.N., Eleonskii, V.M., Kulagin, N.E.: Exact first-order solutions of the nonlinear Schrödinger equation. Theor. Math. Phys. 72, 809–818 (1987)

    Article  Google Scholar 

  26. Hu, X.R., Lou, S.Y., Chen, Y.: Explicit solutions from eigenfunction symmetry of the Korteweg-de Vries equation. Phys. Rev. E 85, 056607 (2012)

    Article  Google Scholar 

  27. Chen, J.B., Pelinovsky, D.E.: Rogue periodic waves of the modified KdV equation. Nonlinearity 31, 1955–1980 (2018)

    Article  MathSciNet  Google Scholar 

  28. Liu, W., Zhang, Y.S., He, J.S.: Rogue wave on a periodic background for Kaup-Newell equation. Rom. Rep. Phys. 70, 106 (2018)

    Google Scholar 

  29. Zhou, H.J., Chen, Y.: Breathers and rogue waves on the double-periodic background for the reverse-space-time derivative nonlinear Schrödinger equation. Nonlinear Dyn. 106, 3437 (2021)

    Article  Google Scholar 

  30. Tang, X.Y., Lou, S.Y., Zhang, Y.: Localized excitations in (2+1)-dimensional systems. Phys. Rev. E 66(4), 046601 (2002)

    Article  MathSciNet  Google Scholar 

  31. Li, M., Xu, T.: Dark and antidark soliton interactions in the nonlocal nonlinear Schrödinger equation with the self-induced parity-time-symmetric potential. Phys. Rev. E 91, 033202 (2015)

    Article  MathSciNet  Google Scholar 

  32. Ablowitz, M.J., Feng, B.F., Luo, X.D., Musslimani, Z.H.: Inverse scattering transform for the nonlocal reverse space-time nonlinear Schrödinger equation. Theor. Math. Phys. 196, 1241–1267 (2018)

    Article  Google Scholar 

  33. Wang, M.M., Chen, Y.: Dynamic behaviors of general N-solitons for the nonlocal generalized nonlinear Schrödinger equation. Nonlinear Dyn. 104, 2621–2638 (2021)

    Article  Google Scholar 

  34. Cartarius, H., Wunner, G.: Model of a PT-symmetric Bose-Einstein condensate in a \(\delta \)-function double-well potential. Phys. Rev. A 86, 013612 (2012)

    Article  Google Scholar 

  35. Gadzhimuradov, T.A., Agalarov, A.M.: Towards a gauge-equivalent magnetic structure of the nonlocal nonlinear Schrödinger equation. Phys. Rev. A 93, 062124 (2016)

    Article  Google Scholar 

  36. Schindler, J., Li, A., Zheng, M.C., Ellis, F.M., Kottos, T.: Experimental study of active LRC circuits with PT symmetries. Phys. Rev. A 84, 040101 (2011)

    Article  Google Scholar 

  37. Yang, J.K.: Physically significant nonlocal nonlinear Schrödinger equation and its soliton solutions. Phys. Rev. E 98, 042202 (2018)

  38. Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear Schrödinger equations. Phys. Rev. Lett. 110, 064105 (2013)

    Article  Google Scholar 

  39. Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear equations. Stud. Appl. Math. 139(1), 7–59 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (No.12175069), Global Change Research Program of China (No.2015CB953904), Science and Technology Commission of Shanghai Municipality (No.18dz2271000 and No.21JC1402500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Chen.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Chen, Y., Tang, X. et al. Complex excitations for the derivative nonlinear Schrödinger equation. Nonlinear Dyn 109, 1947–1967 (2022). https://doi.org/10.1007/s11071-022-07521-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07521-4

Keywords

Navigation