Skip to main content
Log in

BLS-based formation control for nonlinear multi-agent systems with actuator fault and input saturation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper studies the formation control of a nonlinear multi-agent system based on a broad learning system under actuator fault and input saturation. Firstly, the multi-agent tracking error is proposed based on graph theory. Besides, fault tolerance should be considered when actuator fault exists. Meanwhile, the broad learning system is put forward to approximate the unknown nonlinear function in the multi-agent system. Then, an input saturation auxiliary system is introduced to reduce the adverse effects of input saturation constraints. At the same time, the disturbance observer technology is used to estimate the actuator failure as a lumped uncertainty. At last, dynamic surface control is introduced to realize formation control with actuator fault and input saturation. Obviously, it is difficult to design a controller with unknown nonlinear function, input saturation, and actuator fault existing in the multi-agent system. The Lyapunov method can prove the stability of the formation control. The simulation results verify the effectiveness of the controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Data availability

All data included in this study are available upon request by contact with the corresponding author.

References

  1. Yu, D., Chen, C.L.P., Xu, H.: Fuzzy swarm control based on sliding-mode strategy with self-organized omnidirectional mobile robots system. IEEE Trans. Syst., Man, Cybern.: Syst. 35, 1–13 (2021)

    MathSciNet  Google Scholar 

  2. Hua, Y., Dong, X., Li, Q., Ren, Z.: Distributed fault-tolerant time-varying formation control for high-order linear multi-agent systems with actuator failures. ISA Trans. 71, 40–50 (2017)

    Article  Google Scholar 

  3. Yu, D., Chen, C.L.P.: Smooth transition in communication for swarm control with formation change. IEEE Trans. Ind. Inf. 16(11), 6962–6971 (2020)

    Article  Google Scholar 

  4. Liu, Y.-J., Zeng, Q., Tong, S., Chen, C.L.P., Liu, L.: Adaptive neural network control for active suspension systems with time-varying vertical displacement and speed constraints. IEEE Trans. Ind. Electron. 66(12), 9458–9466 (2019)

    Article  Google Scholar 

  5. Yu, D., Chen, C.L.P., Xu, H.: Intelligent decision making and bionic movement control of self-organized swarm. IEEE Trans. Ind. Electron. 68(7), 6369–6378 (2021)

    Article  Google Scholar 

  6. Hua, Y., Dong, X., Li, Q., Ren, Z.: Distributed fault-tolerant time-varying formation control for second-order multi-agent systems with actuator failures and directed topologies. IEEE Trans. Circuits Syst. II: Expr. Briefs 65(6), 774–778 (2018)

    Article  Google Scholar 

  7. Liu, L., Wang, Z., Yao, X., Zhang, H.: Echo state networks based data-driven adaptive fault tolerant control with its application to electromechanical system. IEEE/ASME Trans. Mechatron. 23(3), 1372–1382 (2018)

    Article  Google Scholar 

  8. Yu, Z., Qu, Y., Zhang, Y.: Distributed fault-tolerant cooperative control for multi-UAVs under actuator fault and input saturation. IEEE Trans. Control Syst. Technol. 27(6), 2417–2429 (2019)

    Article  Google Scholar 

  9. Shen, Q., Yue, C., Goh, C.H., Wang, D.: Active fault-tolerant control system design for spacecraft attitude maneuvers with actuator saturation and faults. IEEE Trans. Ind. Electron. 66(5), 3763–3772 (2019)

    Article  Google Scholar 

  10. Liu, L., Wang, Z., Zhang, H.: Data-based adaptive fault estimation and fault-tolerant control for MIMO model-free systems using generalized fuzzy hyperbolic model. IEEE Trans. Fuzzy Syst. 26(6), 3191–3205 (2018)

    Article  Google Scholar 

  11. Zhang, L., Yang, G.-H.: Adaptive fuzzy prescribed performance control of nonlinear systems with hysteretic actuator nonlinearity and faults. IEEE Trans. Syst., Man, Cybern.: Syst. 48(12), 2349–2358 (2018)

    Article  MathSciNet  Google Scholar 

  12. Hou, Z.-G., Cheng, L., Tan, M.: Decentralized robust adaptive control for the multiagent system consensus problem using neural networks. IEEE Trans. Syst., Man, Cybern.: Part B (Cybern.) 39(3), 636–647 (2009)

    Article  Google Scholar 

  13. Yu, D., Chen, C.L.P.: Automatic leader-follower persistent formation generation with minimum agent-movement in various switching topologies. IEEE Trans. Cybern. 50(4), 1569–1581 (2020)

    Article  Google Scholar 

  14. Shi, Q., Li, T., Li, J., Chen, C.P., Xiao, Y., Shan, Q.: Adaptive leader-following formation control with collision avoidance for a class of second-order nonlinear multi-agent systems. Neurocomputing 350, 282–290 (2019)

    Article  Google Scholar 

  15. Yu, D., Chen, C.L.P., Ren, C.-E., Sui, S.: Swarm control for self-organized system with fixed and switching topology. IEEE Trans. Cybern. 50(10), 4481–4494 (2020)

    Article  Google Scholar 

  16. Li, X., Song, S., Wu, J.: Exponential stability of nonlinear systems with delayed impulses and applications. IEEE Trans. Autom. Control 64(10), 4024–4034 (2019)

    Article  MathSciNet  Google Scholar 

  17. Liu, Y.-J., Li, Y.-X.: Adaptive fuzzy output-feedback control of uncertain SISO nonlinear systems. Nonlinear Dyn. 61(4), 749–761 (2010)

    Article  MathSciNet  Google Scholar 

  18. Zhang, J., Xiang, Z.: Event-triggered adaptive neural network sensor failure compensation for switched interconnected nonlinear systems with unknown control coefficients. IEEE Trans. Neural Netw. Learn. Syst. 59, 1–12 (2021)

    Google Scholar 

  19. Xu, H., Yu, D., Sui, S., Zhao, Y.-P., Chen, C.L.P., Wang, Z.: Nonsingular practical fixed-time adaptive output feedback control of MIMO nonlinear systems. IEEE Trans. Neural Netw. Learn. Syst. 2, 1–13 (2022)

    Google Scholar 

  20. Wen, G.-X., Liu, Y.-J.: Adaptive fuzzy-neural tracking control for uncertain nonlinear discrete-time systems in the NARMAX form. Nonlinear Dyn. 66(4), 745–753 (2011)

    Article  MathSciNet  Google Scholar 

  21. Zhang, J., Li, S., Ahn, C.K., Xiang, Z.: Adaptive fuzzy decentralized dynamic surface control for switched large-scale nonlinear systems with full-state constraints. IEEE Trans. Cybern. 3, 1–12 (2021)

    Google Scholar 

  22. Liu, Y., Huang, P., Zhang, F., Zhao, Y.: Distributed formation control using artificial potentials and neural network for constrained multiagent systems. IEEE Trans. Control Syst. Technol. 28(2), 697–704 (2020)

    Article  Google Scholar 

  23. Li, C., Tong, S., Wang, W.: Fuzzy adaptive high-gain-based observer backstepping control for SISO nonlinear systems. Nonlinear Dyn. 181(11), 2405–2421 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Li, Y., Ren, C., Tong, S.: Adaptive fuzzy backstepping output feedback control of nonlinear uncertain time-delay systems based on high-gain filters. Nonlinear Dyn. 69(3), 781–792 (2012)

    Article  MathSciNet  Google Scholar 

  25. Wen, G., Chen, C.L.P., Feng, J., Zhou, N.: Optimized multi-agent formation control based on an identifier-actor-critic reinforcement learning algorithm. IEEE Trans. Fuzzy Syst. 26(5), 2719–2731 (2018)

    Article  Google Scholar 

  26. Chen, C.L.P., Ren, C.-E., Du, T.: Fuzzy observed-based adaptive consensus tracking control for second-order multiagent systems with heterogeneous nonlinear dynamics. IEEE Trans. Fuzzy Syst. 24(4), 906–915 (2016)

    Article  Google Scholar 

  27. Ren, C.-E., Chen, L., Chen, C.L.P.: Adaptive fuzzy leader-following consensus control for stochastic multiagent systems with heterogeneous nonlinear dynamics. IEEE Trans. Fuzzy Syst. 25(1), 181–190 (2017)

    Article  MathSciNet  Google Scholar 

  28. Li, Y., Ren, C., Tong, S.: Adaptive fuzzy backstepping output feedback control for a class of MIMO time-delay nonlinear systems based on high-gain observer. Nonlinear Dyn. 67(2), 1175–1191 (2011)

    Article  MathSciNet  Google Scholar 

  29. Zhang, Y., Wang, D., Peng, Z., Li, T.: Distributed containment maneuvering of uncertain multiagent systems in MIMO strict-feedback form. IEEE Trans. Syst., Man, Cybern.: Syst. 51(2), 1354–1364 (2021)

    Article  Google Scholar 

  30. Tsai, C.-C., Yu, C.-C., Wu, C.-W.: Adaptive distributed BLS-FONTSM formation control for uncertain networking heterogeneous omnidirectional mobile multirobots. J. Chin. Instit. Eng. 43(2), 171–185 (2019)

    Article  Google Scholar 

  31. Yu, D., Long, J., Chen, C.L.P., Wang, Z.: Adaptive swarm control within saturated input based on nonlinear coupling degree. IEEE Trans. Syst., Man, Cybern.: Syst. 86, 1–12 (2021)

    Google Scholar 

  32. Chen, C.L.P., Liu, Z.: Broad learning system: an effective and efficient incremental learning system without the need for deep architecture. IEEE Trans. Neural Net. Learn. Syst. 29(1), 10–24 (2018)

    Article  MathSciNet  Google Scholar 

  33. Chen, C.L.P., Liu, Z., Feng, S.: Universal approximation capability of broad learning system and its structural variations. IEEE Trans. Neural Net. Learn. Syst. 30(4), 1191–1204 (2019)

    Article  MathSciNet  Google Scholar 

  34. Dong, W., Farrell, J.A., Polycarpou, M.M., Djapic, V., Sharma, M.: Command filtered adaptive backstepping. IEEE Trans. Control Syst. Technol. 20(3), 566–580 (2012)

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China under Grant 62006192, Grant 62025602 Grant 61751202, Grant 61751205, Grant 61572540, Grants U1803263 and Grants 11931015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dengxiu Yu.

Ethics declarations

Conflict of interest

The authors state that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Li, S., Yu, D. et al. BLS-based formation control for nonlinear multi-agent systems with actuator fault and input saturation. Nonlinear Dyn 109, 2657–2673 (2022). https://doi.org/10.1007/s11071-022-07505-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07505-4

Keywords

Navigation