Skip to main content

Advertisement

Log in

Optimal trajectory planning strategy for underactuated overhead crane with pendulum-sloshing dynamics and full-state constraints

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Complex pendulum-sloshing dynamics induced with specific payloads such as the suspension liquid container increase incredibly the difficulty of the anti-swing control for overhead cranes. Especially, it would be a greater challenge for anti-swing control with simultaneously considering the transportation time and the energy consumption while guaranteeing actuated/unactuated states constraints. In this paper, an optimal trajectory planning strategy for overhead crane with pendulum-sloshing dynamics is proposed by taking transportation time, the energy consumption and full-state constraints into account. First, the dynamic model of overhead crane system with pendulum-sloshing effects is established. Then, based on the formulation as a quasi-convex optimization, three optimal trajectory planning strategies including minimum-time trajectory planning (MTTP), minimum-energy trajectory planning (METP) and time-energy optimal trajectory planning (TEOTP) are proposed to suppress the container swing and liquid sloshing simultaneously. In the three trajectory planners, quasi-convex optimization theory is used to guarantee actuated states (trolley acceleration and velocity) and unactuated states (container swing angle and liquid level sloshing displacement) constraints to be satisfied. Finally, numerical simulation and real experiments results prove that the control performance of the proposed optimal trajectory planning strategy is better than existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data Availability Statement

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Ramli, L., Mohamed, Z., Abdullahi, A.M., Jaafar, H.I., Lazim, I.M.: Control strategies for crane systems: a comprehensive review. Mech. Syst. Signal Process. 95, 1–23 (2017)

    Google Scholar 

  2. Zhang, M., Ma, X., Rong, X., Song, R., Tian, X., Li, Y.: A partially saturated adaptive learning controller for overhead cranes with payload hoisting/lowering and unknown parameters. Nonlinear Dyn. 89, 1779–1791 (2017)

    MathSciNet  Google Scholar 

  3. Miranda-Colorado, R.: Robust observer-based anti-swing control of 2D-crane systems with load hoisting-lowering. Nonlinear Dyn. 104, 3581–3596 (2021)

    Google Scholar 

  4. Chentouf, B., Han, Z.J.: On the stabilization of an overhead crane system with dynamic and delayed boundary conditions. IEEE Trans. Autom. Control 65(10), 4273–4280 (2020)

    MathSciNet  MATH  Google Scholar 

  5. Piedrafita, R., Comín, D., Beltrán, J.R.: Simulink\(\circledR\) implementation and industrial test of Input Shaping techniques. Control. Eng. Pract. 79, 1–21 (2018)

    Google Scholar 

  6. Maghsoudi, M.J., Mohamed, Z., Sudin, S., Buyamin, S., Jaafar, H.I., Ahmad, S.M.: An improved input shaping design for an efficient sway control of a nonlinear 3D overhead crane with friction. Mech. Syst. Signal Process. 92, 364–378 (2017)

    Google Scholar 

  7. Ramli, L., Mohamed, Z., Jaafar, H.I.: A neural network-based input shaping for swing suppression of an overhead crane under payload hoisting and mass variations. Mech. Syst. Signal Process. 107, 484–501 (2018)

    Google Scholar 

  8. Maghsoudi, M.J., Ramli, L., Sudin, S., Mohamed, Z., Husain, A.R., Wahid, H.: Improved unity magnitude input shaping scheme for sway control of an underactuated 3D overhead crane with hoisting. Mech. Syst. Signal Process. 123, 466–482 (2019)

    Google Scholar 

  9. Zhao, X., Huang, J.: Distributed-mass payload dynamics and control of dual cranes undergoing planar motions. Mech. Syst. Signal Process. 126, 636–648 (2019)

    Google Scholar 

  10. Huang, J., Xie, X., Liang, Z.: Control of bridge cranes with distributed-mass payload dynamics. IEEE/ASME Trans. Mechatron. 20, 481–486 (2015)

    Google Scholar 

  11. Sun, N., Fang, Y., Zhang, X., Yuan, Y.: Transportation task-oriented trajectory planning for underactuated overhead cranes using geometric analysis. IET Control Theory Appl. 6(10), 1410–1423 (2012)

    MathSciNet  Google Scholar 

  12. Zhang, M., Ma, X., Chai, H., Rong, X., Tian, X., Li, Y.: A novel online motion planning method for double-pendulum overhead cranes. Nonlinear Dyn. 85(2), 1079–1090 (2016)

    MATH  Google Scholar 

  13. Peng, H., Zhao, H., Wang, X., Li, Y.: Robust motion trajectory optimization of overhead cranes based on polynomial chaos expansion. ISA Trans. 110, 71–85 (2021)

    Google Scholar 

  14. Shen, P., Schatz, J., Caverly, R.J.: Passivity-based adaptive trajectory control of an underactuated 3-DOF overhead crane. Control. Eng. Pract. 112, 104834 (2021)

    Google Scholar 

  15. Chwa, D.: Sliding-mode-control-based robust finite-time antisway tracking control of 3-D overhead cranes. IEEE Trans. Ind. Electron. 64(8), 6775–6784 (2017)

    Google Scholar 

  16. Wu, X., Xu, K., Lei, M., He, X.: Disturbance-compensation-based continuous sliding mode control for overhead cranes with disturbances. IEEE Trans. Autom. Sci. Eng. 17(4), 2182–2189 (2020)

    Google Scholar 

  17. Tuan, L.A.: Neural observer and adaptive fractional-order backstepping fast-terminal sliding-mode control of RTG cranes. IEEE Trans. Ind. Electron. 68(1), 434–442 (2021)

    Google Scholar 

  18. Qian, D., Tong, S., Lee, S.: Fuzzy-Logic-based control of payloads subjected to double-pendulum motion in overhead cranes. Autom. Constr. 65, 133–143 (2016)

    Google Scholar 

  19. Aguiar, C., Leite, D., Pereira, D., Andonovski, G., Škrjanc, I.: Nonlinear modeling and robust LMI fuzzy control of overhead crane systems. J. Franklin Inst. 358(2), 1376–1402 (2021)

    MathSciNet  MATH  Google Scholar 

  20. Lu, B., Fang, Y., Sun, N.: Enhanced-coupling adaptive control for double-pendulum overhead cranes with payload hoisting and lowering. Automatica 101, 241–251 (2019)

    MathSciNet  MATH  Google Scholar 

  21. Kim, J., Lee, D., Kiss, B., Kim, D.: An adaptive unscented Kalman filter with selective scaling (AUKF-SS) for overhead cranes. IEEE Trans. Ind. Electron. 68(7), 6131–6140 (2021)

    Google Scholar 

  22. Le, V.A., Le, H.X., Nguyen, L., Phan, M.X.: An efficient adaptive hierarchical sliding mode control strategy using neural networks for 3D overhead cranes. Int. J. Autom. Comput. 16, 614–627 (2019)

    Google Scholar 

  23. Rincon, L., Kubota, Y., Venture, G., Tagawa, Y.: Inverse dynamic control via “simulation of feedback control’’ by artificial neural networks for a crane system. Control Eng. Practice. 94, 104203 (2020)

    Google Scholar 

  24. Turner, M.R., Bridges, T.J., Ardakani, H.A.: The pendulum-slosh problem: simulation using a time-dependent conformal mapping. J. Fluids Struct. 59, 202–223 (2015)

    Google Scholar 

  25. Sanapala, V.S., Sajish, S.D., Velusamy, K., Ravisankar, A., Patnaik, B.S.V.: An experimental investigation on the dynamics of liquid sloshing in a rectangular tank and its interaction with an internal vertical pole. J. Sound Vib. 449, 43–63 (2019)

    Google Scholar 

  26. Turner, M.R., Ardakani, H.A., Bridges, T.J.: Instability of sloshing motion in a vessel undergoing pivoted oscillations. J. Fluids Struct. 52, 166–180 (2015)

    Google Scholar 

  27. Weidman, P., Turner, M.R.: Experiments on the synchronous sloshing in suspended containers described by shallow-water theory. J. Fluids Struct. 66, 331–349 (2016)

    Google Scholar 

  28. Turner, M.R., Weidman, P.: Coupled sloshing in hyperbolic containers suspended as a bifilar pendulum. Phys. Rev. Fluids. 1(4), 043604 (2016)

    Google Scholar 

  29. Kaneshige, A., Kaneshige, N., Hasegawa, S., Miyoshi, T., Terashima, K.: Model and control system for 3D transfer of liquid tank with overhead crane considering suppression of liquid vibration. Int. J. Cast Met. Res. 21(1–4), 293–298 (2008)

    Google Scholar 

  30. Kaneshige, A., Miyoshi, T., Terashima, K.: The development of an autonomous mobile overhead crane system for the liquid tank transfer. In: Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 630–635 (2009)

  31. Ueki, S., Yamauchi, Y., Kaneshige, A., Miyoshi, T., Terashima, K.: Design of liquid container transport control system with overhead traveling crane. Trans. Jpn Soc. Mech. Eng. 83, 855 (2017)

    Google Scholar 

  32. Xing, B., Huang, J.: Control of pendulum-sloshing dynamics in suspended liquid containers. IEEE Trans. Ind. Electron. 68(6), 5146–5154 (2021)

    Google Scholar 

  33. AlSaibie, A., Singhose, W.: Experimental testing of liquid slosh suppression in a suspended container with compound-pendulum dynamics. In Proceedings of 9th Asian Control Conference, pp. 1–6 (2013)

  34. Sung, Y., Singhose, W.: Robustness analysis of input shaping commands for two-mode flexible systems. Control Theory Appl. IET 3(6), 722–730 (2009)

    MathSciNet  Google Scholar 

  35. Alshaya, A., Alshayji, A.: Robust multi-steps input command for liquid sloshing control. J. Vib. Control (2021). https://doi.org/10.1177/10775463211017721

    Article  Google Scholar 

  36. Alshaya, A., Almujarrab, D.: A smooth polynomial shaped command for sloshing suppression of a suspended liquid container. Trans. Inst. Meas. Control. 43(2), 278–294 (2021)

    Google Scholar 

  37. Alshaya, A., Alghanim, K.: Command shaping for sloshing suppression of a suspended liquid container. ASME J. Dyn. Syst. Meas. Control. 142(12), 121003 (2020)

    Google Scholar 

  38. Zhang, X., Fang, Y., Sun, N.: Minimum-time trajectory planning for underactuated overhead crane systems with state and control constraints. IEEE Trans. Ind. Electron. 61(12), 6915–6925 (2014)

    Google Scholar 

  39. Chen, H., Fang, Y., Sun, N.: A swing constrained time-optimal trajectory planning strategy for double pendulum crane systems. Nonlinear Dyn. 89, 1513–1524 (2017)

    MathSciNet  Google Scholar 

  40. Sun, N., Wu, Y., Chen, H., Fang, Y.: An energy-optimal solution for transportation control of cranes with double pendulum dynamics: design and experiments. Mech. Syst. Signal Process. 102, 87–101 (2018)

    Google Scholar 

  41. Wang, X., Liu, J., Dong, X., Peng, H., Li, C.: An energy-time optimal autonomous motion control framework for overhead cranes in the presence of obstacles. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 235(13), 2373–2385 (2021)

    Google Scholar 

  42. Thakar, P.S., Trivedi, P.K., Bandyopadhyay, B., Gandhi, P.S.: A new nonlinear control for asymptotic stabilization of a class of underactuated systems: an implementation to slosh-container problem. IEEE/ASME Trans. Mechatron. 22(2), 1082–1092 (2017)

    Google Scholar 

  43. Hamaguchi, M.: Damping control of sloshing in liquid container in cart with active vibration reducer: the case of a curved path on a horizontal plane. IEEE/ASME Trans. Mechatron. 24(1), 361–372 (2019)

    Google Scholar 

  44. Yano, K., Terashima, K.: Sloshing suppression control of liquid transfer systems considering a 3-D transfer path. IEEE/ASME Trans. Mechatron. 10(1), 8–16 (2005)

    Google Scholar 

  45. Kuo, T.T., Kang, S.J.: Control of fast crane operation. Autom. Constr. 42, 25–35 (2014)

    Google Scholar 

  46. Mar, R., Goyal, A., Nguyen, V., Yang, T., Singhose, W.: Combined input shaping and feedback control for double-pendulum systems. Mech. Syst. Signal Process. 85, 267–277 (2017)

    Google Scholar 

  47. Alyukov, A., Leamy, M.J.: Two-scale command shaping for arresting motion in nonlinear systems. Nonlinear Dyn. 103, 3223–3240 (2021)

    Google Scholar 

  48. Qian, D., Tong, S., Lee, S.G.: Fuzzy-logic-based control of payloads subjected to double-pendulum motion in overhead cranes. Autom. Constr. 65, 133–143 (2016)

    Google Scholar 

  49. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  50. Hu, G., Makkar, C., Dixon, W.E.: Energy-based nonlinear control of underactuated euler-lagrange systems subject to impacts. IEEE Trans. Autom. Control 52(9), 1742–1748 (2007)

    MathSciNet  MATH  Google Scholar 

  51. Zhang, M., Jing, X., Zhu, Z.: Disturbance employment-based sliding mode control for 4-DOF tower crane systems. Mech. Syst. Signal Process. 161, 107946 (2021)

    Google Scholar 

  52. Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 3.0 beta. http://cvxr.com/cvx (2021)

Download references

Funding

This work was supported by the Joint Fund of the National Nature Science Foundation of China and Shandong Province under Grant U1706228 and the Key Research and Development Project of Shandong Province under Grant 2021CXGC010701.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Ma, X., Li, Z. et al. Optimal trajectory planning strategy for underactuated overhead crane with pendulum-sloshing dynamics and full-state constraints. Nonlinear Dyn 109, 815–835 (2022). https://doi.org/10.1007/s11071-022-07480-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07480-w

Keywords

Navigation