Skip to main content
Log in

Delay-induced self-organization dynamics in a prey-predator network with diffusion

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Considering that time delay (delay) is a common phenomenon in biological systems, reaction-diffusion equations with delay are widely used to study the dynamic mechanism of those systems, in which delay can induce the loss of stability and degradation of performance. In this paper, taking into account the inhomogeneous distribution of species in space and this can be considered as a random network, the pattern dynamics of a prey-predator network system with diffusion and delay are investigated. The effect of delay and diffusion on the network system is obtained by linear stability analysis, including the stability and Hopf bifurcation as well as Turing pattern. Our results show that the stability of the system changes with the value of delay. Moreover, we obtain Turing pattern related to the network connection probability and diffusion. Finally, the numerical simulation verifies our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. Ser. B 237, 37–72 (1952)

    Article  MathSciNet  Google Scholar 

  2. Ouyang, Q., Swinney, H.L.: Transition from a uniform state to hexagonal and striped Turing patterns. Nature 352, 610–612 (1991)

    Article  Google Scholar 

  3. Zheng, Q.Q., Shen, J.W.: Turing instability in a gene network with cross-diffusion. Nonlinear Dyn. 78, 1301–1310 (2014)

    Article  MathSciNet  Google Scholar 

  4. Zheng, Q.Q., Shen, J.W., Xu, Y.: Turing instability in the reaction-diffusion network. Phys. Rev. E 102, 062215 (2020)

    Article  MathSciNet  Google Scholar 

  5. Ji, Y.S., Shen, J.W.: Turing instability of Brusselator in the Reaction-Diffusion Network. Complexity 641, 1–12 (2020)

    MATH  Google Scholar 

  6. Tanner, J.T.: The stability and intrinsic growth rates of prey and predator populations. Ecology 56, 855–867 (1975)

    Article  Google Scholar 

  7. Hsu, S.B., Hwang, T.W.: Global stability for a class of predator-prey systems. SIAM J. Appl. Math. 55, 763–783 (1995)

    Article  MathSciNet  Google Scholar 

  8. Ji, C.Y., Jiang, D.Q., Shi, N.Z.: Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with stochastic perturbation. J. Math. Anal. Appl. 359, 482–498 (2009)

    Article  MathSciNet  Google Scholar 

  9. Aziz-Alaoui, M.A., Daher, O.M.: Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling type II schemes. App. Math. Lett. 16, 1069–1075 (2003)

    Article  MathSciNet  Google Scholar 

  10. Leslie, P.H.: Some further notes on the use of matrices in population mathematics. Biometrika 35, 213–245 (1948)

    Article  MathSciNet  Google Scholar 

  11. Peng, R., Wang, M.X.: Positive steady states of the Holling-Tanner prey-predator model with diffusion. Proc. R. Soc. Edinb. A 135, 149–164 (2005)

    Article  MathSciNet  Google Scholar 

  12. Banerjee, M., Banerjee, S.: Turing instabilities and spatio-temporal chaos in ratio-dependent Holling-Tanner model. Math. Bios. 236, 64–76 (2012)

    Article  MathSciNet  Google Scholar 

  13. Wang, W.M., Guo, Z.G., Upadhyay, R.K., Lin, Y.Z.: Pattern Formation in a Cross-Diffusive Holling-Tanner Model. Discret. Dyn. Nat. Soc. 5560, 1–12 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Li, X., Jiang, W.H., Shi, J.P.: Hopf bifurcation and Turing instability in the reaction-diffusion Holling-Tanner predator-prey model. SIAM J. Appl. Math. 78, 287–306 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Zhou, J.: Bifurcation analysis of a diffusive predator-prey model with ratio-dependent Holling type III functional response. Nonlinear Dyn. 81, 1535–1552 (2015)

    Article  MathSciNet  Google Scholar 

  16. Camara, B.I., Aziz-Alaoui, M.A.: Turing and Hopf patterns formation in a predator-prey model with Leslie-Gower type functional response. Dynam. Cont. Discrete Ser. B 16, 1–11 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Shi, H.B., Li, W.T., Guo, L.: Positive steady states of a diffusive predator-prey system with modified Holling-Tanner functional response. Nonlinear Anal. RWA 11, 3711–3721 (2010)

    Article  MathSciNet  Google Scholar 

  18. Othmer, H.G., Scriven, L.E.: Instability and dynamic pattern in cellular networks. J. theor. Biol. 32, 507–537 (1971)

    Article  Google Scholar 

  19. Aly, S., Farkas, M.: Bifurcations in a predator-prey model in patchy environment with diffusion. Nonlinear Anal. RWA 5, 519–526 (2004)

    Article  MathSciNet  Google Scholar 

  20. Jansen, V.A.A., Lloyd, A.L.: Local stability analysis of spatially homogeneous solutions of multi-patch systems. J. Math. Biol. 41, 232–252 (2000)

    Article  MathSciNet  Google Scholar 

  21. Nakao, H., Mikhailov, A.S.: Turing patterns in network-organized activator-inhibitor systems. Nat. Phys. 6, 544–550 (2010)

    Article  Google Scholar 

  22. Fernandes, L.D., de Aguiar, M.A.M.: Turing patterns and apparent competition in predator-prey food webs on networks. Phys. Rev. E 86, 056203 (2012)

    Article  Google Scholar 

  23. Kouvaris, N.E., Hata, S., Dìaz-Guilera, A.: Pattern formation in multiplex networks. Sci. Reports 5, 10840 (2015)

    Google Scholar 

  24. Zheng, Q.Q., Shen, J.W.: Turing instability induced by random network in Fitzhugh-Nagumo model. App. Math. Comput. 381, 125304 (2020)

    Article  MathSciNet  Google Scholar 

  25. Liu, C., Chang, L.L., Huang, Y., Wang, Z.: Turing patterns in a predator-prey model on complex networks. Nonlinear Dyn. 99, 3313–3322 (2020)

    Article  Google Scholar 

  26. Bimal, K.M., Dinesh, K.S.: SEIRS epidemic model with delay for transmission of malicious objects in computer network. Appl. Math. Comput. 188, 1476–1482 (2007)

    MathSciNet  MATH  Google Scholar 

  27. Shen, J.W., Liu, Z.R., Zheng, W.X., Xu, F.D., Chen, L.N.: Oscillatory dynamics in a simple gene regulatory network mediated by small RNAs. Phys. A 388, 2995–3000 (2009)

    Article  MathSciNet  Google Scholar 

  28. Dong, T., Xu, W., Liao, X.F.: Hopf bifurcation analysis of reaction-diffusion neural oscillator system with excitatory-to-inhibitory connection and time delay. Nonlinear Dyn. 89, 2329–2345 (2017)

    Article  MathSciNet  Google Scholar 

  29. Sun, C.J., Lin, Y.P., Han, M.A.: Stability and Hopf bifurcation for an epidemic disease model with delay. Chaos Solitons Fractals 30, 204–216 (2006)

    Article  MathSciNet  Google Scholar 

  30. Zhang, J.F.: Bifurcation analysis of a modified Holling-Tanner predator-prey model with time delay. Appl. Math. Model. 36, 1219–1231 (2012)

    Article  MathSciNet  Google Scholar 

  31. Ruan, S.G.: Absolute stability, conditional stability and bifurcation in Kolmogorov-type predator-prey systems with discrete delays. Q. Appl. Math. 59, 159–173 (2001)

    Article  MathSciNet  Google Scholar 

  32. Sen, S., Ghosh, P., Riaz, S.S., Ray, D.S.: Time-delay-induced instabilities in reaction-diffusion systems. Phys. Rev. E 80, 046212 (2009)

    Article  Google Scholar 

  33. Nindjin, A.F., Aziz-Alaoui, M.A., Cadivel, M.: Analysis of a predator-prey model with modiled Leslie-Gower and Holling-Type II schemes with time delay. Nonlinear Anal. RWA 7, 1104–1118 (2006)

    Article  Google Scholar 

  34. Song, Y.L., Han, M.A., Peng, Y.H.: Stability and Hopf bifurcations in a competitive Lotka-Volterra system with two delays. Chaos Solitons Fractals 22, 1139–1148 (2004)

    Article  MathSciNet  Google Scholar 

  35. Yang, R.Z., Zhang, C.R.: Dynamics in a diffusive predator-prey system with a constant prey refuge and delay. Nonlinear Anal. RWA 31, 1–22 (2016)

    Article  MathSciNet  Google Scholar 

  36. Chang, L.L., Liu, C., Sun, G.Q., Wang, Z., Jin, Z.: Delay induced patterns in a predator-prey model on complex networks with diffusion. New J. Phys. 21, 073035 (2019)

    Article  MathSciNet  Google Scholar 

  37. Wang, X.Y., Song, Z., Li, Z.Q., Chang, L.L., Wang, Z.: Delay-induced patterns in a reaction-diffusion system on complex networks. New J. Phys. 23, 073022 (2021)

    Article  MathSciNet  Google Scholar 

  38. Tan, J., Li, C., Huang, T.: The stability of impulsive stochastic Cohen–Grossberg neural networks with mixed delays and reaction–diffusion terms. Cogn Neurodyn. 9, 213–20 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would particularly like to thank the anonymous referee and Prof.Yong Xu for their comments.

Funding

Funding was provided by National Natural Science Foundation of China (11772291), Basic research Project of Universities in Henan Province (21zx009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianwei Shen.

Ethics declarations

Conflicts of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Q., Shen, J. Delay-induced self-organization dynamics in a prey-predator network with diffusion. Nonlinear Dyn 108, 4499–4510 (2022). https://doi.org/10.1007/s11071-022-07431-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07431-5

Keywords

Navigation