Skip to main content
Log in

An avian influenza model with nonlinear incidence and recovery rates in deterministic and stochastic environments

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

To assess the comprehensive impact of intervention strategies and available hospital resources, in this paper we first propose an avian influenza model with nonlinear incidence and recovery rates and investigate the local and global stability of the feasible equilibria. Taking into account the inherent randomness of the growth and spread of epidemics, we then extend the model into a random scenario and study the persistence, extinction and the existence of ergodic stationary distribution of the stochastic model. Finally, we numerically illustrate the obtained results. Both theoretical and numerical results show that: (i) Whether the avian influenza disappears or not depends entirely on the threshold in deterministic or random environment; (ii) Adequate hospital resources, government interventions and noise may suppress the outbreak of avian influenza virus; and (iii) Using multiple control strategies simultaneously is more effective in reducing the number of infections than using a single strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Swayne, D.E.: Animal Influenza, 2nd edn. Wiley-Blackwell, Iowa (2016)

    Book  Google Scholar 

  2. Xue, K., Moncla, L.H., Bedford, T., Bloom, J.D.: Within-host evolution of human influenza virus. Trends Microbiol. 26(9), 781–793 (2018)

    Article  Google Scholar 

  3. Centers for Disease Control and Prevention (CDC), Avian Influenza. https://www.cdc.gov/flu/avianflu/bird-flu-basics.htm

  4. Sooryanarain, H., Elankumaran, S.: Environmental role in influenza virus outbreaks. Annu. Rev. Anim. Biosci. 3, 347–373 (2015)

    Article  Google Scholar 

  5. World Health Organization, Cumulative number of confirmed human cases of avian influenza A (H5N1) reported to WHO. http://www.who.int/influenza/human_animal_interface/H5N1_cumulative_table_archives/en/

  6. Shen, Y., Lu, H.: Global concern regarding the fifth case of human infection with avian influenza A (H7N9) virus in China. Biosci. Trends 11(1), 120–121 (2017)

    Article  Google Scholar 

  7. Yu, H., Wu, J., Cowling, B.J., et al.: Impact of live poultry market closure in reducing bird-to-human transmission of avian influenza A(H7N9) virus: an ecological study. Lancet 383(9916), 541–548 (2014)

    Article  Google Scholar 

  8. Yuan, J., Lau, E.H.Y., Li, K., et al.: Effect of live poultry market closure on avian influenza A(H7N9) virus activity in Guangzhou, China, 2014. Emerg. Infect. Dis. 21(10), 1784–1793 (2015)

    Article  Google Scholar 

  9. Iwami, S., Takeuchi, Y., Liu, X.: Avian-human influenza epidemic model. Math. Biosci. 207(1), 1–25 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Iwami, S., Takeuchi, Y., Liu, X.: Avian flu pandemic: can we prevent it? J. Theor. Biol. 257(1), 181–190 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lee, J., Kim, J., Kwon, H.D.: Optimal control of an influenza model with seasonal forcing and age-dependent transmission rates. J. Theor. Biol. 317, 310–320 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jaberi-Douraki, M., Moghadas, S.M.: Optimal control of vaccination dynamics during an influenza epidemic. Math. Biosci. Eng. 11(5), 1045–1063 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wang, L., Liu, Z., Xu, D., Zhang, X.: Global dynamics and optimal control of an influenza model with vaccination, media coverage and treatment. Int. J. Biomath. 10(5), 1750068 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bourouiba, L., Gourley, S.A., Liu, R., Wu, J.: The interaction of migratory birds and domestic poultry and its role in sustaining avian influenza. SIAM J. Appl. Math. 71(2), 487–516 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu, S., Ruan, S., Zhang, X.: On avian influenza epidemic models with time delay. Theor. Biosci. 134, 75–82 (2015)

    Article  Google Scholar 

  16. Chen, C., Wang, P., Zhang, L.: A two-thresholds policy for a Filippov model in combating influenza. J. Math. Biol. 81, 435–461 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chong, N., Smith, R.: Modeling avian influenza using Filippov systems to determine culling of infected birds and quarantine. Nonlinear Anal-Real. 24, 196–218 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Xiao, Y., Tang, S., Wu, J.: Media impact switching surface during an infectious disease outbreak. Sci. Rep. 5, 7838 (2015)

    Article  Google Scholar 

  19. Chen, C., Chong, N., Smith, R.: A Filippov model describing the effects of media coverage and quarantine on the spread of human influenza. Math. Biosci. 296, 98–112 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, S., Ruan, S., Zhang, X.: Nonlinear dynamics of avian influenza epidemic models. Math. Biosci. 283, 118–135 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu, S., Pang, L., Ruan, S., Zhang, X.: Global dynamics of avian influenza epidemic models with psychological effect. Comput. Math. Method. M. 2015, 913726 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Funk, S., Salathé, M., Jansen, V.A.A.: Modelling the influence of human behaviour on the spread of infectious diseases: a review. J. R. Soc. Interface 7(50), 1247–1256 (2010)

    Article  Google Scholar 

  23. Xiao, D., Ruan, S.: Global analysis of an epidemic model with nonmonotone incidence rate. Math. Biosci. 208(2), 419–429 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mu, R., Wei, A., Yang, Y.: Global dynamics and sliding motion in A(H7N9) epidemic models with limited resources and Filippov control. J. Math. Anal. Appl. 477(2), 1296–1317 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, W., Ruan, S.: Bifurcations in an epidemic model with constant removal rate of the infectives. J. Math. Anal. Appl. 291(2), 775–793 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhao, H., Wang, L., Oliva, S., Zhu, H.: Modeling and dynamics analysis of Zika transmission with limited medical resources. B. Math. Biol. 82(8), 99 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shan, C., Zhu, H.: Bifurcations and complex dynamics of an SIR model with the impact of the number of hospital beds. J. Differ. Eq. 257(5), 1662–1688 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Abdelrazec, A., Bélair, J., Shan, C., Zhu, H.: Modeling the spread and control of dengue with limited public health resources. Math. Biosci. 271, 136–145 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhang, J., Jin, Z., Sun, G., Sun, X., Wang, Y., Huang, B.: Determination of original infection source of H7N9 avian influenza by dynamical model. Sci. Rep. 4, 4846 (2014)

    Article  Google Scholar 

  30. Spencer, S.: Stochastic Epidemic Models For Emerging Diseases, PhD thesis. University of Nottingham (2011)

  31. Beddington, J.R., May, R.M.: Harvesting natural populations in a randomly fluctuating environment. Science 197, 463–465 (1977)

    Article  Google Scholar 

  32. Zhang, X.: Global dynamics of a stochastic avian-human influenza epidemic model with logistic growth for avian population. Nonlinear Dyn. 90, 2331–2343 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang, F., Zhang, X.: The threshold of a stochastic avian-human influenza epidemic model with psychological effect. Physica A 492, 485–495 (2018)

    Article  MathSciNet  Google Scholar 

  34. Shi, Z., Zhang, X., Jiang, D.: Dynamics of an avian influenza model with half-saturated incidence. Appl. Math. Comput. 355, 399–416 (2019)

    MathSciNet  MATH  Google Scholar 

  35. Yu, X., Yuan, S., Zhang, T.: The effects of toxin-producing phytoplankton and environmental fluctuations on the planktonic blooms. Nonlinear Dyn. 91, 1653–1668 (2018)

    Article  MATH  Google Scholar 

  36. Xu, C., Yuan, S., Zhang, T.: Competitive exclusion in a general multi-species chemostat model with stochastic perturbations. B. Math. Biol. 83, 4 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhao, S., Yuan, S., Wang, H.: Threshold behavior in a stochastic algal growth model with stoichiometric constraints and seasonal variation. J. Differ. Eq. 268(9), 5113–5139 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  38. Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  39. Gray, A., Greenhalgh, D., Hu, L., Mao, X., Pan, J.: A stochastic differential equation SIS epidemic model. SIAM J. Appl. Math. 71(3), 876–902 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Mao, X.: Stochastic Differential Equations and Applications. Horwood Publishing, Chichester (1997)

    MATH  Google Scholar 

  41. Lipster, R.: A strong law of large numbers for local martingales. Stochastics 3, 217–228 (1980)

    Article  MathSciNet  Google Scholar 

  42. Liu, M., Bai, C.: Analysis of a stochastic tri-trophic food-chain model with harvesting. J. Math. Biol. 73, 597–625 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  43. Yang, Q., Jiang, D., Shi, N., Ji, C.: The ergodicity and extinction of stochastically perturbed SIR and SEIR epidemic models with saturated incidence. J. Math. Anal. Appl. 388(1), 248–271 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  44. Khasminskii, R.: Stochastic Stability of Differential Equations. Springer-Verlag, Berlin (2012)

    Book  MATH  Google Scholar 

  45. Allen, L.: An Introduction to Mathematical Biology. Prentice-Hall, New Jersey (2006)

    Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (No. 12171441), the Key Scientific Research Project of Colleges and Universities of Henan Province (No. 21A110024) and the Science and Technology Research Project of Henan Province (No. 222102320432).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingwang Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Proof

In fact, it follows from (4) that

(i):

If \(e_1\le 0\), then there is only one sign change in the coefficients of f(x). By Descartes’ Rule of Signs [45], \(f(x)=0\) has a unique positive root;

(ii):

If \(e_1>0\), then

$$\begin{aligned}&f'(x)=4e_4x^3+3e_3x^2+2e_2x+e_1,\\&f(0)=e_0>0,\ f(+\infty )=-\infty . \end{aligned}$$

Clearly, there is only one sign change in the coefficients of \(f'(x)\). Similarly, Descartes’ Rule of Signs [45] implies that \(f'(x)=0\) has a unique positive root denoted by \(x_+\). This, together with \(f'(0)=e_1>0\) and \(f'(+\infty )=-\infty \), yields that

$$\begin{aligned} {\left\{ \begin{array}{ll} 0<f'(x)\le e_1,\ 0\le x<x_+,\\ f'(x)\le 0,\ x\ge x_+. \end{array}\right. } \end{aligned}$$

Thus, f(x) is increasing for \(0\le x<x_+\) and is decreasing for \(x\ge x_+\), showing that Eq. (4) has a unique positive root. \(\square \)

Appendix B

Proof

Assume that \(\epsilon \) meets the following conditions:

$$\begin{aligned}&-\frac{r_a}{2K_a}\frac{1}{{\epsilon }^3}+\varPhi _1\le -1, \end{aligned}$$
(B.1)
$$\begin{aligned}&-\frac{1}{2}(\mu _a+\delta _a-\frac{\sigma _2^2}{2})\frac{1}{\epsilon ^2}+\varPhi _2\le -1, \end{aligned}$$
(B.2)
$$\begin{aligned}&-\frac{1}{2}(\mu _h-\frac{\sigma _3^2}{2})\frac{1}{\epsilon ^2}+\varPhi _3\le -1, \end{aligned}$$
(B.3)
$$\begin{aligned}&-\frac{1}{2}(\mu _h+\delta _h-\frac{\sigma _4^2}{2})\frac{1}{\epsilon ^2}+\varPhi _4\le -1, \end{aligned}$$
(B.4)
$$\begin{aligned}&-\frac{1}{2}(\mu _h-\frac{\sigma _5^2}{2})\frac{1}{\epsilon ^2}+\varPhi _5\le -1, \end{aligned}$$
(B.5)
$$\begin{aligned}&0<\epsilon \le \frac{1}{M}, \end{aligned}$$
(B.6)
$$\begin{aligned}&-M(\mu _a+\delta _a+\frac{1}{2}\sigma _2^2)({\mathcal {R}}_0^S-1)\nonumber \\&\quad -\frac{\varPi _h}{\epsilon }+\varUpsilon \le -1, \end{aligned}$$
(B.7)
$$\begin{aligned}&-M(\mu _a+\delta _a+\frac{1}{2}\sigma _2^2)({\mathcal {R}}_0^S-1)\nonumber \\&\quad -\frac{\beta _h}{\epsilon (1+c\epsilon ^2)}+\varUpsilon \le -1, \end{aligned}$$
(B.8)
$$\begin{aligned}&-M(\mu _a+\delta _a+\frac{1}{2}\sigma _2^2)({\mathcal {R}}_0^S-1)\nonumber \\&\quad -\frac{\mu _0}{\epsilon }+\varUpsilon \le -1, \end{aligned}$$
(B.9)

where \(\varPhi _i\) \((i=1, \ldots , 5)\), \(\varUpsilon \) are defined as (B.10)-(B.15). For convenience, we then divide \({\mathbb {R}}_+^5\backslash U_{\epsilon }\) into \({\mathbb {R}}_+^5\backslash U_{\epsilon }=\bigcup _{k= 1}^{10}U_{\epsilon }^k\), where

$$\begin{aligned}&U_{\epsilon }^1=\{S_a>\frac{1}{\epsilon }\}, U_{\epsilon }^2=\{ I_a>\frac{1}{\epsilon }\}, U_{\epsilon }^3\\&\quad =\{ S_h>\frac{1}{\epsilon }\}, U_{\epsilon }^4=\{ I_h>\frac{1}{\epsilon }\},\\&U_{\epsilon }^{5}=\{ R_h>\frac{1}{\epsilon }\}, U_{\epsilon }^6=\{ 0<S_a<\epsilon \}, U_{\epsilon }^7\\&\quad =\{ 0<I_a<\epsilon \}, U_{\epsilon }^8=\{ 0<S_h<\epsilon \},\\&U_{\epsilon }^9=\{ 0<I_h<\epsilon ^3,I_a>\epsilon , S_h>\epsilon \}, U_{\epsilon }^{10}\\&\quad =\{ 0<R_h<\epsilon ^4, I_h>\epsilon ^3\}. \end{aligned}$$

We just need to prove \({\mathcal {L}}V_4\le -1\) in each \(U_{\epsilon }^k,\ k=1, \cdots , 10\), which means in \({\mathbb {R}}_+^5\backslash U_{\epsilon }\).

Case 1::

If \(X(t)\in U_{\epsilon }^1\), by (24) and (B.1), then

$$\begin{aligned} {\mathcal {L}}V_{4}\le&M\beta _a(b+m_2)(\frac{3}{7}S_a^{\frac{7}{3}}+\frac{4}{7}I_a^{\frac{7}{4}})+\sum \limits _{i=1}^5H_i\\ \le&-\frac{r_a}{2K_a}\frac{1}{{\epsilon }^3}+\varPhi _1\le -1, \end{aligned}$$

where

$$\begin{aligned}&\varPhi _1=\sup \limits _{X(t)\in {\mathbb {R}}_+^5}\{M\beta _a(b+m_2)(\frac{3}{7}S_a^{\frac{7}{3}} +\frac{4}{7}I_a^{\frac{7}{4}})\nonumber \\&\quad +\frac{r_a}{2K_a}S_a^3+\sum \limits _{i=1}^5H_i\}<\infty . \end{aligned}$$
(B.10)

If \(X(t)\in U_{\epsilon }^2\), then it follows from (24) and (B.2) that

$$\begin{aligned} \mathcal {L}V_{4}\le -\frac{1}{2}(\mu _a+\delta _a-\frac{\sigma _2^2}{2})\frac{1}{\epsilon ^2}+\varPhi _2\le -1, \end{aligned}$$

where

$$\begin{aligned}&\varPhi _2=\sup \limits _{X(t)\in {\mathbb {R}}_+^5}\{M\beta _a(b+m_2)(\frac{3}{7}S_a^{\frac{7}{3}} +\frac{4}{7}I_a^{\frac{7}{4}})\nonumber \\&\quad +\frac{1}{2}(\mu _a+\delta _a-\frac{\sigma _2^2}{2})I_a^2+\sum \limits _{i=1}^5H_i\}<\infty . \end{aligned}$$
(B.11)

If \(X(t)\in U_{\epsilon }^3\), then (24) and (B.3) imply that

$$\begin{aligned} \mathcal {L}V_{4}\le -\frac{1}{2}(\mu _h-\frac{\sigma _3^2}{2})\frac{1}{\epsilon ^2}+\varPhi _3\le -1, \end{aligned}$$

where

$$\begin{aligned}&\varPhi _3=\sup \limits _{X(t)\in {\mathbb {R}}_+^5}\{M\beta _a(b+m_2)(\frac{3}{7}S_a^{\frac{7}{3}} +\frac{4}{7}I_a^{\frac{7}{4}})\nonumber \\&\quad +\frac{1}{2}(\mu _h-\frac{\sigma _3^2}{2})S_h^2+\sum \limits _{i=1}^5H_i\}<\infty . \end{aligned}$$
(B.12)

If \(X(t)\in U_{\epsilon }^4\), then it can be seen from (24) and (B.4) that

$$\begin{aligned} \mathcal {L}V_{4}\le -\frac{1}{2}(\mu _h+\delta _h-\frac{\sigma _4^2}{2})\frac{1}{\epsilon ^2}+\varPhi _4\le -1, \end{aligned}$$

where

$$\begin{aligned}&\varPhi _4=\sup \limits _{X(t)\in {\mathbb {R}}_+^5}\{M\beta _a(b+m_2)(\frac{3}{7}S_a^{\frac{7}{3}} +\frac{4}{7}I_a^{\frac{7}{4}})\nonumber \\&\quad +\frac{1}{2}(\mu _h+\delta _h-\frac{\sigma _4^2}{2})I_h^2+\sum \limits _{i=1}^5H_i\}<\infty . \end{aligned}$$
(B.13)

If \(X(t)\in U_{\epsilon }^5\), by (24) and (B.5), then

$$\begin{aligned} \mathcal {L}V_{4}\le -\frac{1}{2}(\mu _h-\frac{\sigma _5^2}{2})\frac{1}{\epsilon ^2}+\varPhi _5\le -1, \end{aligned}$$

where

$$\begin{aligned}&\varPhi _5=\sup \limits _{X(t)\in {\mathbb {R}}_+^5}\{M\beta _a(b+m_2)(\frac{3}{7}S_a^{\frac{7}{3}} +\frac{4}{7}I_a^{\frac{7}{4}})\nonumber \\&\quad +\frac{1}{2}(\mu _h-\frac{\sigma _5^2}{2})R_h^2+\sum \limits _{i=1}^5H_i\}<\infty . \end{aligned}$$
(B.14)
Case 2::

If \(X(t)\in U_{\epsilon }^6\), using (24), (B.6) and the definitions of M and \(\phi _1\), then

$$\begin{aligned} {\mathcal {L}}V_{4}&\le -M(\mu _a+\delta _a+\frac{1}{2}\sigma _2^2)({\mathcal {R}}_0^S-1)\\&\quad -\beta _a(b+m_2)(1-M\epsilon )I_a\\&+\beta _a(b+m_2)I_a+\sum \limits _{i=1}^5H_i\\&\le -M(\mu _a+\delta _a+\frac{1}{2}\sigma _2^2)({\mathcal {R}}_0^S-1)\\&\quad -\beta _a(b+m_2)(1-M\epsilon )I_a+\phi _1\\&\le -\frac{1}{2}M(\mu _a+\delta _a+\frac{1}{2}\sigma _2^2)({\mathcal {R}}_0^S-1)\le -1. \end{aligned}$$

Similarly, if \(X(t)\in U_{\epsilon }^7\), then we also have

$$\begin{aligned} {\mathcal {L}}V_{4}&\le -M(\mu _a+\delta _a+\frac{1}{2}\sigma _2^2)({\mathcal {R}}_0^S-1)\\&\quad -\beta _a(b+m_2)(1-M\epsilon )S_a+\phi _2\\&\le -\frac{1}{2}M(\mu _a+\delta _a+\frac{1}{2}\sigma _2^2)({\mathcal {R}}_0^S-1)\le -1. \end{aligned}$$
Case 3::

If \(X(t)\in U_{\epsilon }^8\), using (24) and (B.7), then

$$\begin{aligned} {\mathcal {L}}V_{4} \le&-M(\mu _a+\delta _a+\frac{1}{2}\sigma _2^2)({\mathcal {R}}_0^S-1)\\&\quad -\frac{\varPi _h}{\epsilon }+\varUpsilon \le -1, \end{aligned}$$

where

$$\begin{aligned} \varUpsilon= & {} \sup \limits _{X(t)\in {\mathbb {R}}_+^5}\{M\beta _a(b+m_2)S_aI_a\nonumber \\&+\sum \limits _{i=1}^5H_i\}<\infty . \end{aligned}$$
(B.15)

If \(X(t)\in U_{\epsilon }^9\), applying (24) and (B.8), then

$$\begin{aligned}&{\mathcal {L}}V_{4}\le -M(\mu _a+\delta _a+\frac{1}{2}\sigma _2^2)({\mathcal {R}}_0^S-1)\\&\quad -\frac{\beta _h}{\epsilon (1+c\epsilon ^2)}+\varUpsilon \le -1. \end{aligned}$$

If \(X(t)\in U_{\epsilon }^{10}\), by (24) and (B.9), then

$$\begin{aligned} \mathcal {L}V_{4}&\le -M(\mu _a+\delta _a+\frac{1}{2}\sigma _2^2)({\mathcal {R}}_0^S-1)\\&\quad -\frac{\mu _0}{\epsilon }+\varUpsilon \le -1. \end{aligned}$$

In short, we have \({\mathcal {L}}V_4\le -1\) on \({\mathbb {R}}_+^5\backslash U_{\epsilon }\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Ma, Y. An avian influenza model with nonlinear incidence and recovery rates in deterministic and stochastic environments. Nonlinear Dyn 108, 4611–4628 (2022). https://doi.org/10.1007/s11071-022-07422-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07422-6

Keywords

Navigation