Skip to main content
Log in

Nonlinear vibration analysis of a generally restrained double-beam structure coupled via an elastic connector of cubic nonlinearity

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Double-beam structures are frequently encountered in various engineering applications. Their vibration behavior is attracting more and more research attention. The majority of the existing studies are mainly limited to double-beam structures coupled via linear connectors. Additionally, the rotational boundary restraints of double-beam structures are usually neglected, limiting the dynamic analysis of double-beam structures in engineering applications. To study the potential application of the elastic cubic nonlinearity on double-beam structures, the dynamic analysis model of a generally restrained double-beam structure coupled via a flexible connector of cubic nonlinearity is modeled in this study. The Galerkin truncated method (GTM) is employed to solve the nonlinear governing equations of the double-beam structure. Mode functions of beam structures without any nonlinearity and damping are selected as the trail and weight functions. The Galerkin condition is applied to discretize the nonlinear governing equations. Then, residual equations of the double-beam structure are established and arranged into a matrix form. The Runge–Kutta method is utilized to solve the corresponding matrix. The finite difference method (FDM) is applied to verify the correctness and reliability of the current model. Based on the model established, the influence of the coupling nonlinearity on the dynamic behavior of the double-beam structure is studied and discussed. The research found that the variation of nonlinear stiffness, coupling viscous damping, and coupling position can effectively transform vibration states of the double-beam structure. For the determined boundary conditions and structural parameters, a suitable combination of coupling nonlinear stiffness, coupling position, and coupling viscous damping has a beneficial effect on the vibration suppression of the double-beam structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availability of data and materials

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Kang, K.H., Kim, K.J.: Modal properties of beams and plates on resilient supports with rotational and translational complex stiffness[J]. J. Sound Vib. 190(2), 207–220 (1996)

    Article  Google Scholar 

  2. Wang, J.T.S., Lin, C.C.: Dynamic analysis of generally supported beams using Fourier series. J. Sound Vib. 196, 285–293 (1996)

    Article  Google Scholar 

  3. Kim, H.K., Kim, M.S.: Vibration of beams with generally restrained boundary conditions using Fourier series. J. Sound Vib. 245(5), 771–784 (2001)

    Article  Google Scholar 

  4. Li, W.L.: Free vibrations of beams with general boundary conditions. J. Sound Vib. 237(4), 709–725 (2000)

    Article  Google Scholar 

  5. Zhao, Y.H., Du, J.T., Xu, D.S.: Vibration characteristics analysis for an axially loaded beam with elastic boundary restraints. J. Vib. Shock 39(15), 109–117 (2020)

    Google Scholar 

  6. Özhan, B.B., Pakdemirli, M.: A general solution procedure for the forced vibrations of a continuous system with cubic nonlinearities: primary resonance case. J. Sound Vib. 325, 894–906 (2009)

    Article  Google Scholar 

  7. Özhan, B.B., Pakdemirli, M.: A general solution procedure for the forced vibrations of a system with cubic nonlinearities: three-to-one internal resonances with external excitation. J. Sound Vib. 329, 2603–2615 (2010)

    Article  Google Scholar 

  8. Ghayesh, M.H., Kazemirad, S., Reid, T.: Nonlinear vibrations and stability of parametrically exited systems with cubic nonlinearities and internal boundary conditions: a general solution procedure. Appl. Math. Model. 36(7), 3299–3311 (2012)

    Article  MathSciNet  Google Scholar 

  9. Mao, X.Y., Ding, H., Chen, L.Q.: Vibration of flexible structures under nonlinear boundary conditions. J. Appl. Mech. 84(11), 111006 (2017)

    Article  Google Scholar 

  10. Ding, H., Lu, Z.Q., Chen, L.Q.: Nonlinear isolation of transverse vibration of pre-pressure beams. J. Sound Vib. 442, 738–751 (2019)

    Article  Google Scholar 

  11. Zhao, Y.H., Du, J.T.: Dynamic behavior of an axially loaded beam supported by a nonlinear spring-mass system. Int. J. Struct. Stab. Dyn. 2150152 (2021)

  12. Georgiades, F., Vakakis, A.F.: Dynamics of a linear beam with an attached local nonlinear energy sink. Commun. Nonlinear Sci. Numer. Simul. 12, 643–651 (2007)

    Article  Google Scholar 

  13. Kani, M., Khadem, S.E., Pashaei, M.H., Dardel, M.: Vibration control of a nonlinear beam with a nonlinear energy sink. Nonlinear Dyn. 83, 1–22 (2015)

    Article  MathSciNet  Google Scholar 

  14. Zhang, Y.W., Hou, S., Xu, K.F., Yang, T.Z., Chen, L.Q.: Forced vibration control of an axially moving beam with an attached nonlinear energy sink. Acta Mech. Solida Sin. 30, 674–682 (2017)

    Article  Google Scholar 

  15. Uddin, M.H., Akbar, M.A., Khan, M.A., Haque, M.A.: Families of exact traveling wave solutions to the space time fractional modified KdV equation and the fractional Kolmogorov-Petrovskii-Piskunovequation. J. Mech. Continua Math. Sci. 13(1), 17–33 (2018)

    Google Scholar 

  16. Uddin, M.H., Khan, M.A., Akbar, M.A., Haque, M.A.: Multi-solitary wave solutions to the general time fractional Sharma-Tasso-Olver equation and the time fractional Cahn-Allen equation. Arab J. Basic Appl. Sci. 26(1), 193–201 (2019)

    Article  Google Scholar 

  17. Uddin, M.H., Khan, M.A., Akbar, M.A., Haque, M.A.: Analytical wave solutions of the space time fractional modified regularized long wave equation involving the conformable fractional derivative. Karbala Int. J. Modern Sci. 5(1): Article 7 (2019)

  18. Uddin, M.H., Khatun, M.A., Arefin, M.A., Akbar, M.A.: Abundant new exact solutions to the fractional nonlinear evolution equation via Riemann-Liouville derivative. Alex. Eng. J. 60, 5183–5191 (2021)

    Article  Google Scholar 

  19. Khatun, M.A., Arefin, M.A., Uddin, M.H., Baleanu, D., Akbar, M.A., Inc, M.: Explicit wave phenomena to the couple type fractional order nonlinear evolution equations. Results Phys. 28, 104597 (2021)

    Article  Google Scholar 

  20. Arefin, M.A., Saeed, M.A., Akbar, M.A., Uddin, M.H.: Analytical behavior of weakly dispersive surface and internal waves in the ocean. J. Ocean Eng. Sci. (2021) (in press)

  21. Zhang, Z., Ding, H., Zhang, Y.W., Chen, L.Q.: Vibration suppression of an elastic beam with boundary inerter-enhanced nonlinear energy sinks. Acta Mech. Solida Sin. 37(3), 387–401 (2021)

    Article  MathSciNet  Google Scholar 

  22. Vu, H.V., Ordonez, A.M., Karnopp, B.H.: Vibration of a double-system. J. Sound Vib. 229(4), 807–822 (2000)

    Article  Google Scholar 

  23. Oniszczuk, Z.: Free transverse vibrations of elastically connected simply supported double-beam complex system. J. Sound Vib. 232(2), 387–403 (2000)

    Article  Google Scholar 

  24. Gurgoze, M., Erdogan, G., Inceoglu, S.: Bending vibrations of beams coupled by a double spring-mass system. J. Sound Vib. 243(2), 361–369 (2001)

    Article  Google Scholar 

  25. Hilal, M.A.: Dynamic response of a double Euler-Bernoulli beam due to a moving constant load. J. Sound Vib. 297, 477–491 (2006)

    Article  Google Scholar 

  26. Zhang, Y.Q., Lu, Y., Wang, S.L., Liu, X.: Vibration and buckling of a double-beam system under compressive axial loading. J. Sound Vib. 318, 341–352 (2008)

    Article  Google Scholar 

  27. Palmeri, A., Adhikari, S.: A Galerkin-type state-space approach for transverse vibrations of slender double-beam systems with viscoelastic inner layer. J. Sound Vib. 330, 6372–6386 (2011)

    Article  Google Scholar 

  28. Pajand, M.R., Hozhabrossadati, S.M.: Free vibration analysis of a double-beam system joined by a mass-spring device. J. Vib. Control 22(13), 3004–3017 (2014)

    Article  MathSciNet  Google Scholar 

  29. Mohammadi, N., Nasirshoaibi, M.: Forced transverse vibration analysis of a Rayleigh double-beam system with a Pasternak middle layer subjected to compressive axial load. J. Vibroeng. 17(8), 4545–4559 (2015)

    Google Scholar 

  30. Pisarski, D., Szmidt, T., Bajer, C., Dyniewicz, B., Bajkowski, J.M.: Vibration control of double-beam system with multiple smart damping members. Shock Vib. 2438902 (2016)

  31. Rahman, M.S., Lee, Y.Y.: New modified multi-level residue harmonic balance method for solving nonlinearly vibrating double-beam problem. J. Sound Vib. 406, 295–327 (2017)

    Article  Google Scholar 

  32. J. Lee, S. Wang. Vibration analysis of a partially connected double-beam system with the transfer matrix method and identification of the slap phenomenon in the system[J]. 2017, 9(7): 1750093.

  33. Agboola, O.O., Gbadeyan, J.A., Iyase, S.A.: Effects of some structural parameters on the vibration of a simply supported non-prismatic double-beam system. Proceedings of the World Congress on Engineering, 2017, IWCE

  34. Fei, H., Danhui, D., Cheng, W., Jia, P.F.: Analysis on the dynamic characteristic of a tensioned double-beam system with a semi theoretical semi numerical method. Compos. Struct. 185(1), 584–599 (2017)

    Google Scholar 

  35. Hao, Q.J., Zhai, W.J., Chen, Z.B.: Free vibration of connected double-beam system with general boundary conditions by a modified Fourier-Ritz method. Arch. Appl. Mech. 88, 741–754 (2018)

    Article  Google Scholar 

  36. Pajand, M.R., Sani, A.A., Hozhabrossadati, S.M.: Analyzing free vibration of a double-beam joined by a three-degree of freedom system. J. Braz. Soc. Mech. Sci. Eng. 41, 211 (2019)

    Article  Google Scholar 

  37. Zhao, X.Z., Asce, P.E.M.: Solution to vibrations of double-beam systems under general boundary conditions. J. Eng. Mech. 147(10), 04021073 (2021)

    Article  Google Scholar 

  38. Li, Y.X., Xiong, F., Xie, L.Z., Sun, L.Z.: State-space approach for transverse vibration of double-beam systems. Int. J. Mech. Sci. 189(1), 105974 (2021)

    Article  Google Scholar 

  39. Stojanovic, V., Petkovic, M.D., Milic, D.: Nonlinear vibrations of a coupled beam-arch bridge system. J. Sound Vib. 464(4), 115000 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 11972125) and the Fok Ying Tung Education Foundation (Grant No. 161049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingtao Du.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest in preparing this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Du, J. Nonlinear vibration analysis of a generally restrained double-beam structure coupled via an elastic connector of cubic nonlinearity. Nonlinear Dyn 109, 563–588 (2022). https://doi.org/10.1007/s11071-022-07410-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07410-w

Keywords

Navigation