Skip to main content
Log in

Optimal solution of the fractional-order smoking model and its public health implications

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper proposes a nonlinear smoking model (SM) by means of a system of fractional-order differential equations. The SM is formulated in the sense of the fractional Caputo derivative. The method consists of an optimization based on a new class of basis functions, namely the generalized shifted Legendre polynomials (GSLP), to solve the fractional SM (FSM). The solution is first approximated by the GSLP with unknown coefficients and parameters in the matrix form; afterward, the operational matrices for the fractional derivatives are calculated. This means that after combining the operational matrices and the Lagrange multipliers technique, an optimization method for solving the nonlinear FSM is obtained. The convergence analysis is also proved, while several examples illustrate the applicability the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. World Health Organization. https://www.cdc.gov/tobacco/data-statistics/fact-sheets/smokeless

  2. World Health Organization: WHO Report on the Global Tobacco Epidemic, 2017 external icon. World Health Organization, Geneva (2017)

    Google Scholar 

  3. World Health Organization: WHO Report on the Global Tobacco Epidemic, 2011external icon. World Health Organization, Geneva (2011)

    Google Scholar 

  4. World Health Organization. https://www.who.int/health-topics/tobacco

  5. Castillo-Garsow, C., Jordan-Salivia, G., Rodriguez Herrera, A.: Mathematical models for the dynamics of tobacco use, recovery, and relapse, Technical Report Series BU-1505-M. Cornell University, Ithaca, NY, USA (2000)

  6. Mahdy, A.M.S., Sweilam, N.H., Higazy, M.: Approximate solution for solving nonlinear fractional order smoking model. Alex. Eng. J. 59(2), 739–752 (2020)

    Google Scholar 

  7. Rahman, G., Agarwal, R.P., Din, Q.: Mathematical analysis of giving up smoking model via harmonic mean type incidence rate. Appl. Math. Comput. 354, 128–148 (2019)

    MathSciNet  MATH  Google Scholar 

  8. Haq, F., Shah, K., Rahman, G., Shahzad, M.: Numerical solution of fractional order smoking model via Laplace Adomian decomposition method. Alex. Eng. J. 57(2), 1061–1069 (2018)

    Google Scholar 

  9. Martín-Sánchez, J.C., Bilal, U., Clèries, R., Lidón-Moyano, C., Fu, M., González-de Paz, L., Franco, M., Fernandez, E., Martínez-Sánchez, J.M.: Modelling lung cancer mortality rates from smoking prevalence: fill in the gap. Cancer Epidemiol. 49, 19–23 (2017)

    Google Scholar 

  10. Guerrero, F., Santonja, F.J., Villanueva, R.J.: Solving a model for the evolution of smoking habit in Spain with homotopy analysis method. Nonlinear Anal. RWA. 14(1), 549–558 (2013)

    MathSciNet  MATH  Google Scholar 

  11. Suat Ertürk, V., Zaman, G., Momani, S.: A numeric-analytic method for approximating a giving up smoking model containing fractional derivatives. Comput. Math. Appl. 64(10), 3065–3074 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Guerrero, F., González-Parra, G., Arenas, A.J.: A nonstandard finite difference numerical scheme applied to a mathematical model of the prevalence of smoking in Spain: a case study. Comput. Appl. Math. 33, 13–25 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Suat Ertürk, V., Zaman, G., Alzalg, B., Zeb, A., Momani, S.: Comparing two numerical methods for approximating a new giving up smoking model involving fractional order derivatives. Iran J. Sci. Technol. Trans. Sci. 41, 569–575 (2017)

    MathSciNet  MATH  Google Scholar 

  14. Swartz, J.B.: Use of a multistage model to predict time trends in smoking induced lung cancer. J. Epidemiol. Community Health 46(3), 11–31 (1992)

    Google Scholar 

  15. Zaman, G.: Qualitative behavior of giving up smoking models. Bull. Malays. Math. Sci. Soc. 34(2), 403–415 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Zeb, A., Chohan, M., Zaman, G.: The homotopy analysis method for approximating of giving up smoking model in fractional order. Appl. Math. 3(8), 914–919 (2012)

    Google Scholar 

  17. Khalid, M., Khan, F.S., Iqbal, A.: Perturbation-iteration algorithm to solve fractional giving up smoking mathematical model. Int. J. Comput. Appl. 142, 1–6 (2016)

    Google Scholar 

  18. Singh, H., Baleanu, D., Singh, J., Dutta, H.: Computational study of fractional order smoking model. Chaos Soliton. Fract. 142, 110440 (2021)

    MathSciNet  Google Scholar 

  19. Zeb, A., Suat Ertürk, V., Khan, U.: An approach for approximate solution of fractional-order smoking model with relapse class. Int. J. Biomath. 11(6), 1850077 (2018). (27 pages)

    MathSciNet  MATH  Google Scholar 

  20. Hassani, H., Avazzadeh, Z., Tenreiro Machado, J.A.: Numerical approach for solving variable-order space-time fractional telegraph equation using transcendental Bernstein series. Eng. Comput. 36, 867–878 (2020)

    Google Scholar 

  21. Babaei, A., Moghaddam, B.P., Banihashemi, S., Tenreiro Machado, J.A.: Numerical solution of variable-order fractional integro-partial differential equations via Sinc collocation method based on single and double exponential transformations. Commun. Nonlinear Sci. Numer. Simul. (2020). https://doi.org/10.1016/j.cnsns.2019.104985

    Article  MathSciNet  MATH  Google Scholar 

  22. Heydari, M.H., Avazzadeh, Z., Yang, Y.: A computational method for solving variable-order fractional nonlinear diffusion-wave equation. Appl. Math. Comput. 352, 235–248 (2019)

    MathSciNet  MATH  Google Scholar 

  23. Hassani, H., Tenreiro Machado, J.A., Avazzadeh, Z.: An effective numerical method for solving nonlinear variable-order fractional functional boundary value problems through optimization technique. Nonlinear Dyn. 97, 2041–2054 (2019)

    MATH  Google Scholar 

  24. Liu, J., Li, X., Hu, X.: A RBF-based differential quadrature method for solving two-dimensional variable-order time fractional advection–diffusion equation. J. Comput. Phys. 384, 222–238 (2019)

    MathSciNet  MATH  Google Scholar 

  25. Moghaddam, B.P., Tenreiro Machado, J.A.: Extended algorithms for approximating variable order fractional derivatives with applications. J. Sci. Comput. 71(3), 1351–1374 (2017)

    MathSciNet  MATH  Google Scholar 

  26. Ortigueira, M.D., Valério, D., Tenreiro Machado, J.A.: Variable order fractional systems. Commun. Nonlinear Sci. Numer. Simul. 71, 231–243 (2019)

    MathSciNet  MATH  Google Scholar 

  27. Sweilam, N.H., AL Mekhlafi, S.M., Albalawi, A.O., Tenreiro Machado, J.A.: Optimal control of variable-order fractional model for delay cancer treatments. Appl. Math. Model. (2020) https://doi.org/10.1016/j.apm.2020.08.012

  28. Sweilam, N.H., AL-Mekhlafi, S.M., Alshomrani, A.S., Baleanu, D.: Comparative study for optimal control nonlinear variable-order fractional tumor model. Chaos Soliton. Fract. (2020) https://doi.org/10.1016/j.chaos.2020.109810

  29. Farayola, M.F., Shafie, S., Siam, F.M., Khan, I.: Mathematical modeling of radiotherapy cancer treatment using Caputo fractional derivative. Comput. Meth. Prog. Bio. (2020). https://doi.org/10.1016/j.cmpb.2019.105306

  30. Hosseininia, M., Heydari, M.H., Roohi, R., Avazzadeh, Z.: A computational wavelet method for variable-order fractional model of dual phase lag bioheat equation. J. Comput. Phys. 395, 1–18 (2019)

    MathSciNet  MATH  Google Scholar 

  31. Hassani, H., Tenreiro Machado, J.A., Naraghirad, E.: An efficient numerical technique for variable order time fractional nonlinear Klein–Gordon equation. Appl. Numer. Math. 154, 260–272 (2020)

    MathSciNet  MATH  Google Scholar 

  32. Pourbabaee, M., Saadatmandi, A.: A novel Legendre operational matrix for distributed order fractional differential equations. Appl. Math. Comput. 361, 215–231 (2019)

    MathSciNet  MATH  Google Scholar 

  33. Fang, Z.W., Sun, H.W., Wang, H.: A fast method for variable-order Caputo fractional derivative with applications to time-fractional diffusion equations. Comput. Math. Appl. 80(5), 1443–1458 (2020)

    MathSciNet  MATH  Google Scholar 

  34. Lorenzo, C.F., Hartley, T.T.: Initialized fractional calculus. Int. J. Appl. Math. 3(3), 249–265 (2000)

    MathSciNet  MATH  Google Scholar 

  35. Sun, H., Chen, W., Wei, H., Chen, Y.: A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems. Eur. Phys. J. Spec. Top. 193, 185–192 (2011)

    Google Scholar 

  36. Abbaszadeh, M., Amjadian, H.: Second-order finite difference/spectral element formulation for solving the fractional advection–diffusion equation. Commun. Appl. Math. Comput. 2, 653–669 (2020)

    MathSciNet  MATH  Google Scholar 

  37. Khader, M.M., Sweilam, N.H.: Approximate solutions for the fractional advection-dispersion equation using Legendre pseudo-spectral method. Comput. Appl. Math. 33, 739–750 (2014)

    MathSciNet  MATH  Google Scholar 

  38. Yuttanan, B., Razzaghi, M.: Legendre wavelets approach for numerical solutions of distributed order fractional differential equations. Appl. Math. Model. 70, 350–364 (2019)

    MathSciNet  MATH  Google Scholar 

  39. Meng, Z., Yi, M., Huang, J., Song, L.: Numerical solutions of nonlinear fractional differential equations by alternative Legendre polynomials. Appl. Math. Comput. 336, 454–464 (2018)

    MathSciNet  MATH  Google Scholar 

  40. Negarchi, N., Nouri, K.: Numerical solution of Volterra–Fredholm integral equations using the collocation method based on a special form of the Müntz–Legendre polynomials. J. Comput. Appl. Math. 344, 15–24 (2018)

    MathSciNet  MATH  Google Scholar 

  41. Guorong, S., Mingkun, L., Yan, L., Yungchun, L., Bin, W., Cunfu, H.: Application of Legendre orthogonal polynomial method in calculating reflection and transmission coefficients of multilayer plates. Wave Motion 84, 32–45 (2019)

    MathSciNet  MATH  Google Scholar 

  42. Baghaee, M., Farrokhabadi, A., Jafari Talookolaei, R.A.: A solution method based on Lagrange multipliers and Legendre polynomial series for free vibration analysis of laminated plates sandwiched by two MFC layers. J. Sound Vib. 447, 42–60 (2019)

    Google Scholar 

  43. Hesameddini, E., Shahbazi, M.: Two-dimensional shifted Legendre polynomials operational matrix method for solving the two-dimensional integral equations of fractional order. Appl. Math. Comput. 322, 40–54 (2018)

    MathSciNet  MATH  Google Scholar 

  44. Wang, Y., Chen, Y.: Shifted Legendre Polynomials algorithm used for the dynamic analysis of viscoelastic pipes conveying fluid with variable fractional order model. Appl. Math. Model. 81, 159–176 (2020)

    MathSciNet  MATH  Google Scholar 

  45. Xiao, Z.-H., Jiang, Y.-L., Qi, Z.-Z.: Finite-time balanced truncation for linear systems via shifted Legendre polynomials. Syst. Control Lett. 126, 48–57 (2019)

    MathSciNet  MATH  Google Scholar 

  46. Diethelm, K.: A fractional calculus based model for the simulation of an outbreak of dengue fever. Nonlinear Dyn. 71, 613–619 (2013)

    MathSciNet  Google Scholar 

  47. Rihan, F.A., Arafa, A.A., Rakkiyappan, R., Rajivganthi, C., Xu, Y.: Fractional-order delay differential equations for the dynamics of hepatitis C virus infection with IFN-\(\alpha \) treatment. Alex. Eng. J. 60, 4761–4774 (2021)

    Google Scholar 

  48. Kreyszig, E.: Introductory Functional Analysis with Applications. John Wiley and Sons. Inc., London (1978)

    MATH  Google Scholar 

  49. Rudin, W.: Real and Complex Analysis, 3d edn. McGraw-Hill Book Company, New York (1987)

    MATH  Google Scholar 

  50. Dahaghin, MSh., Hassani, H.: An optimization method based on the generalized polynomials for nonlinear variable-order time fractional diffusion-wave equation. Nonlinear Dyn. 88(3), 1587–1598 (2017)

    MathSciNet  MATH  Google Scholar 

  51. Van Den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48 (2002)

    MathSciNet  MATH  Google Scholar 

  52. Tuan, N.H., Mohammadi, H., Rezapour, Sh.: A mathematical model for COVID-19 transmission by using the Caputo fractional derivative. Chaos Soliton. Fract. 140, 110107 (2020)

    MathSciNet  Google Scholar 

  53. Rudin, W.: Principles of Mathematical Analysis, 3d edn. McGraw-Hill Book Company, New York (1976)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassani, H., Machado, J.A.T., Avazzadeh, Z. et al. Optimal solution of the fractional-order smoking model and its public health implications. Nonlinear Dyn 108, 2815–2831 (2022). https://doi.org/10.1007/s11071-022-07343-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07343-4

Keywords

Navigation