Skip to main content
Log in

Trigonometric shock waves in the Kaup–Boussinesq system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We consider the modulationally stable version of the Kaup–Boussinesq system which models propagation of nonlinear waves in various physical situations. It is shown that the Whitham modulation equations for this model have a new type of solutions which describe trigonometric shock waves. In the Gurevich–Pitaevskii problem of evolution of an initial discontinuity, these solutions correspond to a nonzero wave excitation on one of the sides of the discontinuity. As a result, the trigonometric shock wave propagates along a rarefaction wave and we consider the problem of the analytical description of such an evolution. Our analytical results are confirmed by numerical calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data are available from the corresponding author on reasonable request.

References

  1. Gurevich, A.V., Pitaevskii, L.P.: Nonstationary structure of a collisionless shock wave. Zh. Eksp. Teor. Fiz. 65, 590–604 (1973)

    Google Scholar 

  2. Gurevich, A.V., Pitaevskii, L.P.: Nonstationary structure of a collisionless shock wave. Sov. Phys. JETP 38, 291 (1974)

    Google Scholar 

  3. Whitham, G.B.: Non-linear dispersive waves. Proc. Roy. Soc. Lond. 283, 238–261 (1965)

    MathSciNet  MATH  Google Scholar 

  4. El, G.A., Hoefer, M.A.: Dispersive shock waves and modulation theory. Physica D 333, 11–65 (2016)

    Article  MathSciNet  Google Scholar 

  5. Kamchatnov, A.M.: Gurevich-Pitaevskii problem and its development. Physics-Uspekhi 64, 48–82 (2021)

    Article  Google Scholar 

  6. Korteweg, D.E., de Vries, G.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Phil. Mag. 39, 422–443 (1895)

    Article  MathSciNet  Google Scholar 

  7. Benjamin, B., Lighthill, M.J.: On cnoidal waves and bores. Proc. Roy. Soc. Lond. 224(1159), 448–460 (1954)

    MATH  Google Scholar 

  8. Boussinesq, J.: Essai sur la théorie des eaux courantes. Mém. Prés. Div. Sav. Acad. Sci. Inst. Fr. 23, 1 (1877)

    MATH  Google Scholar 

  9. Kaup, D.J.: A higher-order water-wave equation and the method for solving it. Progr. Theor. Phys. 54(2), 396–408 (1975)

    Article  MathSciNet  Google Scholar 

  10. Matveev, V.B., Yavor, M.I.: Solutions presque périodiques et a N-solitons de l’équation hydrodynamique non linéaire de Kaup Ann. Inst. Henri. Poincaré A 31, 25–41 (1979)

    MathSciNet  MATH  Google Scholar 

  11. El, G.A., Grimshaw, R.H.J., Pavlov, M.V.: Integrable shallow water equations and undular bores. Stud. Appl. Math. 106, 157–186 (2001)

  12. El, G.A., Grimshaw, R.H.J., Kamchatnov, A.M.: Wave breaking and the generation of undular bores in an integral shallow-water system. Stud. Appl. Math. 114, 395–411 (2005)

  13. Congy, T., Ivanov, S.K., Kamchatnov, A.M., Pavloff, N.: Evolution of initial discontinuities in the Riemann problem for the Kaup-Boussinesq equation with positive dispersion. Chaos 27, 083107 (2017)

    Article  MathSciNet  Google Scholar 

  14. Ivanov, S.K., Kamchatnov, A.M., Congy, T., Pavloff, N.: Solution of the Riemann problem for polarization waves in a two-component Bose-Einstein condensate. Phys. Rev. E 96, 062202 (2017)

    Article  MathSciNet  Google Scholar 

  15. Iacocca, E., Silva, T.J., Hoefer, M.A.: Breaking of Galilean invariance in the hydrodynamic formulation of ferromagnetic thin films. Phys. Rev. Lett. 118, 017203 (2017)

    Article  Google Scholar 

  16. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover Publications, New-York (1972)

    MATH  Google Scholar 

  17. Dubrovin, B.A., Novikov, S.P.: Hydrodynamics of soliton lattices. Sov. Sci. Rev. C. Math. Phys. 9, 1–136 (1993)

    MathSciNet  MATH  Google Scholar 

  18. Kuznetsov, E.A., Mikhailov, A.V.: Stability of stationary waves in nonlinear weakly dispersive media. Zh. Eksp. Teor. Fiz. 67, 1717–1727 (1974)

    MathSciNet  Google Scholar 

  19. Kuznetsov, E.A., Mikhailov, A.V.: Stability of stationary waves in nonlinear weakly dispersive media. Sov. Phys. JETP 40, 855–859 (1974)

    MathSciNet  Google Scholar 

  20. Chen, J., Pelinovsky, D.E.: Periodic travelling waves of the modified KdV equation and rogue waves on the periodic background. J. Nonlinear Sci. 29, 2797–2843 (2019)

    Article  MathSciNet  Google Scholar 

  21. Pelinovsky, D.E., White, R.E.: Localized structures on librational and rotational travelling waves in the sine-Gordon equation. Proc. R. Soc. A 476, 20200490 (2020)

    Article  MathSciNet  Google Scholar 

  22. Landau, L.D., Lifshitz, E.M.: Fluid Mechanics. Pergamon, Oxford (1959)

    Google Scholar 

  23. Marchant, T.R.: Undular bores and the initial-boundary value problem for the modified Korteweg-de Vries equation. Wave Motion 45, 540–555 (2008)

    Article  MathSciNet  Google Scholar 

  24. El, G.A., Hoefer, M.A., Shearer, M.: Dispersive and diffusive-dispersive shock waves for nonconvex conservation laws. SIAM Rev. 59(1), 3–61 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by a grant from Foundation for the Advancement of Theoretical Physics and Mathematics “BASIS.”

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work

Corresponding author

Correspondence to Sergey K. Ivanov.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, S.K., Kamchatnov, A.M. Trigonometric shock waves in the Kaup–Boussinesq system. Nonlinear Dyn 108, 2505–2512 (2022). https://doi.org/10.1007/s11071-022-07326-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07326-5

Keywords

Navigation