Skip to main content
Log in

Rate-dependent asymmetric hysteresis modeling and robust adaptive trajectory tracking for piezoelectric micropositioning stages

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Hysteresis is an inherent characteristic of piezoelectric materials that can be determined by not only the historical input but also the input signal frequency. Hysteresis severely degrades the positioning precision of piezoelectric micropositioning stages. In this study, the hysteresis characteristics and the excitation frequency effects on the hysteresis behaviors of the piezoelectric micropositioning stage are investigated. Accordingly, a rate-dependent asymmetric hysteresis Prandtl–Ishlinskii (RDAPI) model is developed by introducing a dynamic envelope function into the play operators of the Prandtl–Ishlinskii (PI) model. The RDAPI model uses a relatively simple analytical structure with fewer parameters and then other modified PI models to characterize the rate-dependent and asymmetric hysteresis behavior in piezoelectric micropositioning stages. Considering practical situations with the uncertainties and external disturbances associated with the piezoelectric micropositioning stages, the system dynamics are described using a second-order differential equation. On this basis, a corresponding robust adaptive control method that does not involve the construction of a complex hysteretic inverse model is developed. The Lyapunov analysis method proves the stability of the entire closed-loop control system. Experiments confirm that the proposed RDAPI model achieves a significantly improved accuracy compared with the PI model. Furthermore, compared with the inverse RDAPI model-based feedforward compensation and the inverse RDAPI model-based proportional–integral–derivative control methods, the proposed robust adaptive control strategy exhibits improved tracking performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Data statement

The datasets generated during the current study are available from the corresponding author on reasonable request.

Abbreviations

\(b_{s}\) :

Damping coefficient

\(C_{A}\) :

Sum of the capacitance of the total piezoelectric ceramics

d :

External disturbance

\(e_{1}\) :

Tracking error

\(e_{2}\) :

Intermediate variable

F :

Fitness

\(F_{A}\) :

Transduced force from the electrical side

\(F_{r} {[u]}(t)\) :

Classical PI play operator

\(F^{h}_{r}{[u]}(t)\) :

Proposed RDAPI play operator

H :

Hysteresis effect

\(H'\) :

Hysteresis nonlinearity

\(k_{{\textit{amp}}}\) :

Fixed gain of the voltage power amplifier

\(k_{i}\), \(i=1,2\) :

Positive design parameter

\(k_{s}\) :

Moving mechanism stiffness

m :

Moving mechanism mass

M :

Population size

\(p_{i}\), \(i=1,..,n\) :

Density parameter

p, q, and n :

Unknown system parameters

q :

Total charge in the PCA

\(\dot{q}\) :

Resulting current flowing through the circuit

\(q_{c}\) :

Charge stored in the linear capacitance \(C_{A}\)

\(q_{p}\) :

Transduced charge from the mechanical side due to the piezoelectric effect

r :

Threshold of play operator

\(R_{0}\) :

Equivalent internal resistance of driving circuit

\(T_{em}\) :

Electromechanical transducer with transformer ratio

u :

Input of the piezoelectric driver

\(v_{A}\) :

Transduced voltage

\(v_{h}\) :

Generated voltage due to H

\(w^{t}_{1}\) and \(w^{t}_{1}\) :

Chromosome

\(x_{1}=x\) :

Output displacement

\(x_{2}\) :

Time derivative of \(x_{1}\)

\(x_{d}\) :

Reference trajectory

\(\alpha ,\beta \) :

RDAPI model parameters

\(\lambda \), \(\gamma \), and \(\eta \) :

Adjusting parameters of adaptive update laws

\(\rho \) :

Boundary of the disturbance d(t), \(d(t)\le \rho \)

\(\varsigma \) :

Boundary of the nonlinear part \( \alpha {{u}^{2}}\left( t\right) +\sum _{i=1}^{n}{{{p}_{i}}F_{r}^{h}\left[ u\right] \left( t\right) }\)

\(\omega \) :

Unknown hysteresis nonlinearity

AME:

Absolute mean error

PCA:

Piezoelectric ceramic actuator

PI:

Prandtl–Ishlinskii model

RDAPI:

Rate-dependent asymmetric PI model

RMSE:

Root-mean-square error values

References

  1. Xu, Q.: Design and development of a compact flexure-based \(xy\) precision positioning system with centimeter range. IEEE Trans. Ind. Electron. 61(2), 893–903 (2014)

    Article  Google Scholar 

  2. Hoffman, P.J., Hopewell, E.S., Janes, B.: Precision Machining Technology (2011)

  3. Gu, G., Zhu, L., Su, C., Ding, H.: Motion control of piezoelectric positioning stages: Modeling, controller design, and experimental evaluation. IEEE/ASME Trans. Mechatron. 18(5), 1459–1471 (2013)

    Article  Google Scholar 

  4. Kamlah, M., Tsakmakis, C.: Phenomenological modeling of the non-linear electro-mechanical coupling in ferroelectrics. Int. J. Solids Struct. 36, 669–695 (1999)

    Article  MATH  Google Scholar 

  5. Tao, G., Kokotovic, P.V.: Adaptive control of plants with unknown hystereses. IEEE Trans. Autom. Control 40(2), 200–212 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ge, P., Jouaneh, M.: Tracking control of a piezoceramic actuator. IEEE Trans. Control Syst. Technol. 4(3), 209–216 (1996)

    Article  Google Scholar 

  7. Sabarianand, D.V., Karthikeyan, P., Muthuramalingam, T.: A review on control strategies for compensation of hysteresis and creep on piezoelectric actuators based micro systems. Mech. Syst. Signal Process. 140, 106634 (2020)

    Article  Google Scholar 

  8. Esbrook, A., Tan, X., Khalil, H.K.: An indirect adaptive servocompensator for signals of unknown frequencies with application to nanopositioning. Automatica 49(7), 2006–2016 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhang, X., Chen, X., Zhu, G., Su, C.Y.: Output feedback adaptive motion control and its experimental verification for time-delay nonlinear systems with asymmetric hysteresis. IEEE Trans. Ind. Electron. 67(8), 6824–6834 (2020)

    Article  Google Scholar 

  10. Zhu, W., Wang, D.: Non-symmetrical Bouc–Wen model for piezoelectric ceramic actuators. Sens. Actuators A Phys. 181, 51–60 (2012)

    Article  Google Scholar 

  11. Zhu, W., Rui, X.: Hysteresis modeling and displacement control of piezoelectric actuators with the frequency-dependent behavior using a generalized Bouc–Wen model. Precis. Eng. 43, 299–307 (2016)

    Article  Google Scholar 

  12. Zaman, M.A., Sikder, U.: Bouc–Wen hysteresis model identification using modified firefly algorithm. J. Magn. Magn. Mater. 395, 229–233 (2015)

    Article  Google Scholar 

  13. Wang, G., Chen, G.: Identification of piezoelectric hysteresis by a novel Duhem model based neural network. Sens. Actuators A Phys. 264, 282–288 (2017)

    Article  Google Scholar 

  14. Dong, R., Tan, Y., Xie, Y.: Identification of micropositioning stage with piezoelectric actuators. Mech. Syst. Signal Process. 75, 618–630 (2016)

    Article  Google Scholar 

  15. Peyret, N., Rosatello, M., Chevallier, G.L., Dion, J.L.: A Mindlin derived Dahl friction model. Mech. Mach. Theory 117, 48–55 (2017)

    Article  Google Scholar 

  16. Novak, M., Eichler, J., Kosek, M.: Difficulty in identification of Preisach hysteresis model weighting function using first order reversal curves method in soft magnetic materials. Appl. Math. Comput. 319, 469–485 (2018)

    MathSciNet  MATH  Google Scholar 

  17. Li, Z., Zhang, X., Su, C., Chai, T.: Nonlinear control of systems preceded by Preisach hysteresis description: a prescribed adaptive control approach. IEEE Trans. Control Syst. Technol. 24(2), 451–460 (2016)

    Google Scholar 

  18. Stakvik, J.A., Ragazzon, M.R.P., Eielsen, A.A., Gravdahl, J.T.: On implementation of the Preisach model identification and inversion for hysteresis compensation. Model. Identif. Control (MIC) 36(3), 133–142 (2015)

    Article  Google Scholar 

  19. Ge, J.Z., Chang, L., Pérez-Arancibia, N.O.: Preisach-model-based position control of a shape-memory alloy linear actuator in the presence of time-varying stress. Mechatronics 73, 102452 (2021)

    Article  Google Scholar 

  20. Bermúdez, A., Gómez, D., Venegas, P.: Mathematical analysis and numerical solution of models with dynamic Preisach hysteresis. J. Comput. Appl. Math. 367, 112452 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Krasnosel’skii, M., Pokrovskii, A.: Systems With Hysteresis (1989)

  22. Li, Z., Shan, J., Gabbert, U.: Inverse compensation of hysteresis using Krasnoselskii–Pokrovskii model. IEEE/ASME Trans. Mechatron. 23, 966–971 (2018)

    Article  Google Scholar 

  23. Janaideh, M.A., Aljanaideh, O.: Further results on open-loop compensation of rate-dependent hysteresis in a magnetostrictive actuator with the Prandtl–Ishlinskii model. Mech. Syst. Signal Process. 104, 835–850 (2018)

    Article  Google Scholar 

  24. Basaeri, H., Zakerzadeh, M., Yousefikoma, A., Rad, N.F., Mahdavian, M.: Hysteresis modeling, identification and fuzzy PID control of SMA wire actuators using generalized Prandtl–Ishlinskii model with experimental validation. Appl. Comput. Mech. 50(2), 263–274 (2019)

    Google Scholar 

  25. Tan, X., Baras, J.S.: Modeling and control of hysteresis in magnetostrictive actuators. Automatica 40(9), 1469–1480 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Janaideh, M.A., Krejčí, P.: Prandtl–Ishlinskii hysteresis models for complex time dependent hysteresis nonlinearities. Physica B 407(9), 1365–1367 (2012)

    Article  Google Scholar 

  27. Sayyaadi, H., Zakerzadeh, M.R.: Position control of shape memory alloy actuator based on the generalized Prandtl–Ishlinskii inverse model. Mechatronics 22(7), 945–957 (2012)

    Article  Google Scholar 

  28. Yang, M., Li, C., Gu, G., Zhu, L.: A modified Prandtl–Ishlinskii model for rate-dependent hysteresis nonlinearity using mth-power velocity damping mechanism. Int. J. Adv. Rob. Syst. 11(10), 163 (2014)

    Article  Google Scholar 

  29. Janaideh, M.A., Rakheja, S., Su, C.Y.: A generalized Prandtl–Ishlinskii model for characterizing the hysteresis and saturation nonlinearities of smart actuators. Smart Mater. Struct. 18(4), 045001 (2009)

    Article  Google Scholar 

  30. Xie, S., Liu, H., Mei, J., Gu, G.: Modeling and compensation of asymmetric hysteresis for pneumatic artificial muscles with a modified generalized Prandtl–Ishlinskii model. Mechatronics 52, 49–57 (2018)

    Article  Google Scholar 

  31. Xiao, S., Li, Y.: Modeling and high dynamic compensating the rate-dependent hysteresis of piezoelectric actuators via a novel modified inverse Preisach model. IEEE Trans. Control Syst. Technol. 21(5), 1549–1557 (2012)

    Article  Google Scholar 

  32. Eielsen, A.A., Gravdahl, J.T., Pettersen, K.Y.: Adaptive feed-forward hysteresis compensation for piezoelectric actuators. Rev. Sci. Instrum. 83(8), 085001 (2012)

    Article  Google Scholar 

  33. Zhou, M., Wang, Y., Zhang, Y., Gao, W.: Hysteresis inverse compensation-based model reference adaptive control for a piezoelectric micro-positioning platform. Smart Mater. Struct. 30(1), 015019 (2021)

    Article  Google Scholar 

  34. Zhang, X., Wang, Y., Wang, C., Su, C.Y., Li, Z., Chen, X.: Adaptive estimated inverse output-feedback quantized control for piezoelectric positioning stage. IEEE Trans. Cybern. 49(6), 2106–2118 (2019)

    Article  Google Scholar 

  35. Li, Z., Shan, J., Gabbert, U.: A direct inverse model for hysteresis compensation. IEEE Trans. Ind. Electron. 68(5), 4173–4181 (2021)

    Article  Google Scholar 

  36. Habineza, D., Rakotondrabe, M., Le Gorrec, Y.: Bouc–Wen modeling and feedforward control of multivariable hysteresis in piezoelectric systems: application to a 3-DoF piezotube scanner. IEEE Trans. Control Syst. Technol. 23(5), 1797–1806 (2015)

    Article  Google Scholar 

  37. Liu, S., Su, C., Li, Z.: Robust adaptive inverse control of a class of nonlinear systems with Prandtl–Ishlinskii hysteresis model. IEEE Trans. Autom. Control 59(8), 2170–2175 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Yu, Y., Zhang, C., Wang, Y., Zhou, M.: Neural network-based iterative learning control for hysteresis in magnetic shape memory alloy actuator. IEEE/ASME Trans. Mechatron. (2021)

  39. Shakiba, S., Ourak, M., Vander Poorten, E., Ayati, M., Yousefi-Koma, A.: Modeling and compensation of asymmetric rate-dependent hysteresis of a miniature pneumatic artificial muscle-based catheter. Mech. Syst. Signal Process. 154, 107532 (2021)

    Article  Google Scholar 

  40. Saikumar, N., Sinha, R.K., HosseinNia, S.H.: Resetting disturbance observers with application in compensation of bounded nonlinearities like hysteresis in piezo-actuators. Control. Eng. Pract. 82, 36–49 (2019)

    Article  Google Scholar 

  41. Song, G., Zhao, J., Zhou, X., De Abreu-Garcia, J.A.: Tracking control of a piezoceramic actuator with hysteresis compensation using inverse Preisach model. IEEE/ASME Trans. Mechatron. 10(2), 198–209 (2005)

    Article  Google Scholar 

  42. Yu, Y., Zhang, C., Zhou, M.: Narmax model-based hysteresis modeling of magnetic shape memory alloy actuators. IEEE Trans. Nanotechnol. 19, 1–4 (2020)

    Article  Google Scholar 

  43. Zhang, C., Yu, Y., Wang, Y., Zhou, M.: Takagi–Sugeno fuzzy neural network hysteresis modeling for magnetic shape memory alloy actuator based on modified bacteria foraging algorithm. Int. J. Fuzzy Syst. 22(4), 1314–1329 (2020)

    Article  Google Scholar 

  44. Zhang, X., Li, B., Chen, X., Li, Z., Peng, Y., Su, C.-Y.: Adaptive implicit inverse control for a class of discrete-time hysteretic nonlinear systems and its application. IEEE/ASME Trans. Mechatron. 25(4), 2112–2122 (2020)

    Article  Google Scholar 

  45. Zhang, C., Yu, Y., Han, Z., Zhou, M.: Chaotic neural network-based hysteresis modeling with dynamic operator for magnetic shape memory alloy actuator. IEEE Trans. Magn. (2021). https://doi.org/10.1109/TMAG.2021.3065721

  46. Ling, J., Feng, Z., Zheng, D., Yang, J., Yu, H., Xiao, X.: Robust adaptive motion tracking of piezoelectric actuated stages using online neural-network-based sliding mode control. Mech. Syst. Signal Process. 150, 107235 (2020)

    Article  Google Scholar 

  47. Zhang, X., Li, B., Li, Z., Yang, C., Chen, X., Su, C.: Adaptive neural digital control of hysteretic systems with implicit inverse compensator and its application on magnetostrictive actuator. In: IEEE Transactions on Neural Networks and Learning Systems, pp. 1–14 (2020)

  48. Su, C., Stepanenko, Y., Svoboda, J., Leung, T.P.: Robust adaptive control of a class of nonlinear systems with unknown backlash-like hysteresis. IEEE Trans. Autom. Control 45(12), 2427–2432 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  49. Liu, W., Cheng, L., Hou, Z.-G., Yu, J., Tan, M.: An inversion-free predictive controller for piezoelectric actuators based on a dynamic linearized neural network model. IEEE/ASME Trans. Mechatron. 21(1), 214–226 (2016)

    Google Scholar 

  50. Chen, Z., Zheng, J., Zhang, H., Ding, H.: Tracking of piezoelectric actuators with hysteresis: a nonlinear robust output regulation approach. Int. J. Robust Nonlinear Control 27(5), 2610–2626 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  51. Schneider, T.R.: A genetic algorithm for the identification of conformationally invariant regions in protein molecules. Acta Crystallographica D Biol. Crystallogr. 58(2), 195–208 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 51675228 and the Program of Science and Technology Development Plan of Jilin Province of China under Grants 20180101052JC and 20190303020SF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miaolei Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, L., Luo, Y., Gao, W. et al. Rate-dependent asymmetric hysteresis modeling and robust adaptive trajectory tracking for piezoelectric micropositioning stages. Nonlinear Dyn 108, 2023–2043 (2022). https://doi.org/10.1007/s11071-022-07324-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07324-7

Keywords

Navigation