Skip to main content
Log in

Integrability and multisoliton solutions of the reverse space and/or time nonlocal Fokas–Lenells equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper studies reverse space and/or time nonlocal Fokas–Lenells (FL) equation, which describes the propagation of nonlinear light pulses in monomode optical fibers when certain higher-order nonlinear effects are considered, by Hirota bilinear method. Firstly, we construct variable transformations from reverse space nonlocal FL equation to reverse time and reverse space-time nonlocal FL equations. Secondly, the multisoliton and quasi-periodic solutions of the reverse space nonlocal FL equation are derived through Hirota bilinear method, and the soliton solutions of reverse time and reverse space-time nonlocal FL equations are given through variable transformations. Also, dynamical behaviors of the multisoliton solutions are discussed in detail by analyzing their wave structures. Thirdly, asymptotic analysis of two- and three-soliton solutions of reverse space nonlocal FL equation is used to investigate the elastic interaction and inelastic interaction. Finally, the infinite conservation laws of three types of nonlocal FL equations are found by using their lax pairs. The results obtained in this paper possess new properties that different from the ones for FL equation, which are useful in exploring novel physical phenomena of nonlocal systems in nonlinear media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Data Availability Statement

All data generated or analyzed during this study are included in this published article.

References

  1. Fokas, A.S.: On a class of physically important integrable equations. Phys. D 87, 145–150 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Lenells, J., Fokas, A.S.: On a novel integrable generalization of the nonlinear Schrödinger equation. Nonlinearity 22, 11–27 (2008)

    Article  MATH  Google Scholar 

  3. Lenells, J.: Exactly solvable model for nonlinear pulse propagation in optical fibers. Stud. Appl. Math. 123, 215–232 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arshad, M., Lu, D., Rehman, M.U., Ahmed, I., Sultan, A.M.: Optical solitary wave and elliptic function solutions of the Fokas-Lenells equation in the presence of perturbation terms and its modulation instability. Phys. Scr. 94, 105202 (2019)

    Article  Google Scholar 

  5. Wang, M., Chen, Y.: Dynamic behaviors of mixed localized solutions for the three-component coupled Fokas-Lenells system. Nonlinear Dyn. 98, 1781–1794 (2019)

    Article  MATH  Google Scholar 

  6. Triki, H., Wazwaz, A.M.: Combined optical solitary waves of the Fokas-Lenells equation. Wave Random Complex 27, 587–593 (2017)

    Article  MathSciNet  Google Scholar 

  7. Zhao, P., Fan, E., Hou, Y.: Algebro-geometric solutions and their reductions for the Fokas-Lenells hierarchy. J. Nonlinear Math. Phys. 20, 355–393 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ling, L., Feng, B.F., Zhu, Z.: General soliton solutions to a coupled Fokas-Lenells equation. Nonlinear Anal. RWA 40, 185–214 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Xu, S., He, J., Cheng, Y., Porseizan, K.: The n-order rogue waves of Fokas-Lenells equation. Math. Meth. Appl. 38, 1106–1126 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhang, Q., Zhang, Y., Ye, R.: Exact solutions of nonlocal Fokas-Lenells equation. Appl. Math. Lett. 98, 336 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Wang, X., Wei, J., Wang, L., Zhang, J.: Baseband modulation instability, rogue waves and state transitions in a deformed Fokas-Lenells equation. Nonlinear Dyn. 97, 343–353 (2019)

    Article  MATH  Google Scholar 

  12. Yang, J., Zhang, Y.: Higher-order rogue wave solutions of a general coupled nonlinear Fokas-Lenells system. Nonlinear Dyn. 93, 589–597 (2019)

    Google Scholar 

  13. Xu, T., Chen, Y.: Semirational solutions to the coupled Fokas-Lenells equations. Nonlinear Dyn. 95, 87–99 (2019)

    Article  MATH  Google Scholar 

  14. Liu, F., Zhou, C.C., Lü, X., Xu, H.: Dynamic behaviors of optical solitons for Fokas-Lenells equation in optical fiber. Optik 224, 165237 (2020)

    Article  Google Scholar 

  15. Matsuno, Y.: A direct method of solution for the Fokas-Lenells derivative nonlinear Schrödinger equation: I. Bright soliton solutions. J. Phys. A: Math. Theor. 45, 235202 (2012)

    Article  MATH  Google Scholar 

  16. Matsuno, Y.: A direct method of solution for the Fokas-Lenells derivative nonlinear Schrödinger equation: II. Dark soliton solutions. J. Phys. A: Math. Theor. 45, 475202 (2012)

    Article  MATH  Google Scholar 

  17. Xu, J., Fan, E.: Long-time asymptotics for the Fokas-Lenells equation with decaying initial value problem: Without solitons. J. Differ. Equ. 259, 1098–1148 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhao, Y., Fan, E.: Inverse scattering transformation for the Fokas-Lenells equation with nonzero boundary. arXiv:1912.12400v1 (2019)

  19. Kang, Z.Z., Xia, T.C., Ma, X.: Multi-soliton solutions for the coupled Fokas-Lenells system via Riemann-Hilbert approach. China. Phys. Lett. 35, 070201 (2018)

    Article  Google Scholar 

  20. Vekslerchik, V.E.: Lattice representation and dark solitons of the Fokas-Lenells equation. Nonlinearity 24, 1165–1175 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Triki, H., Wazwaz, A.M.: New types of chirped soliton solutions for the Fokas-Lenells equation. Int. J. Numer. Method. H. 27, 1596–1601 (2017)

    Article  Google Scholar 

  22. Wang, Z., He, L., Qin, Z., Grimshaw, R., Mu, G.: High-order rogue waves and their dynamics of the Fokas-Lenells equation revisited: a variable separation technique. Nonlinear Dyn. 98, 2067–2077 (2019)

    Article  MATH  Google Scholar 

  23. Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear Schrödinger equation. Phys. Rev. Lett. 110, 064105 (2013)

    Article  Google Scholar 

  24. Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear equations. Stud. Appl. Math. 139, 7–59 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, B., Zhang, Z., Li, B.: Two types of smooth positons for nonlocal Fokas-Lenells equation. Int. J. Mod. Phys. B 34, 2050148 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yang, B., Yang, J.: Transformations between nonlocal and local integrable equations. Stud. Appl. Math. 140, 178–201 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pertsch, T., Peschel, U., Kobelke, J., Schuster, K., Bartelt, H., Nolte, S., Tunnermann, A., Lederer, F.: Nonlinearity and disorder in fiber arrays. Phys. Rev. Lett. 93, 053901 (2004)

    Article  Google Scholar 

  28. Gürses, M., Pekcan, A.: Nonlocal nonlinear Schrödinger equations and their soliton solutions. J. Math. Phys. 59, 051501 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gürses, M., Pekcan, A.: Nonlocal modified KdV equations and their soliton solutions by Hirota method. Commun. Nonlinear. 67, 427–448 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, L., Duan, C., Yu, F.J.: An improved Hirota bilinear method and new application for a nonlocal integrable complex modified Korteweg-de Vries (MKdV) equation. Phys. Lett. A 383, 1578–1582 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yu, F.J., Fan, R.: Nonstandard bilinearization and interaction phenomenon for PT-symmetric coupled nonlocal nonlinear Schröinger equations. Appl. Math. Lett. 103, 106209 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yang, Y., Suzuki, T., Cheng, X.: Darboux transformations and exact solutions for the integrable nonlocal Lakshmanan-Porsezian-Daniel equation. Appl. Math. Lett. 99, 105998 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. Li, M., Xu, T., Meng, D.: Rational solitons in the parity-time-symmetric nonlocal nonlinear Schrödinger model. J. Phys. Soc. Japan. 85, 124001 (2016)

    Article  Google Scholar 

  34. Li, M., Xu, T.: Dark and antidark soliton interactions in the nonlocal nonlinear Schrödinger equation with the self-induced parity-time-symmetric potential. Phys. Rev. E 91, 033202 (2015)

    Article  MathSciNet  Google Scholar 

  35. Huang, Y., Jing, H., Li, M., Ye, Z., Yao, Y.: On solutions of an extended nonlocal nonlinear Schrödinger equation in plasmas. Mathematics. 8, 1099 (2020)

    Article  Google Scholar 

  36. Xu, T., Li, L., Li, M., Li, C., Zhang, X.: Rational solutions of the defocusing non-local nonlinear Schrödinger equation: asymptotic analysis and soliton interactions. Proc. R. Soc. A. 477, 20210512 (2021)

    Article  Google Scholar 

  37. He, F.J., Fan, E.G., Xu, J.: Long-Time asymptotics for the nonlocal mKdV equation. Commun. Theor. Phys. 71, 475–488 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  38. Yang, B., Chen, Y.: Dynamics of high-order solitons in the nonlocal nonlinear Schröinger equations. Nonlinear Dyn. 94, 489–502 (2018)

    Article  MATH  Google Scholar 

  39. Feng, B.F., Luo, X.D., Ablowitz, M.J., Musslimani, Z.H.: General soliton solution to a nonlocal nonlinear Schrödinger equation with zero and nonzero boundary conditions. Nonlinearity 31, 5385–5409 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. Peng, W.Q., Tian, S.F., Zhang, T.T., Fang, Y.: Rational and semi-rational solutions of a nonlocal (2+1)-dimensional nonlinear Schrödinger equation. Math. Meth. Appl. Sci. 42, 6865–6877 (2019)

    Article  MATH  Google Scholar 

  41. Liu, S., Wu, H., Zhang, D.J.: New dynamics of the classical and nonlocal Gross-Pitaevskii equation with a parabolic potential. Rep. Math. Phys. 86, 271–292 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  42. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  43. Liu, W.J., Tian, B., Zhang, H.Q., Li, L.L., Xue, Y.S.: Soliton interaction in the higher-order nonlinear Schrödinger equation investigated with Hirota-bilinear method. Phys. Rev. E 77, 066605 (2008)

    Article  MathSciNet  Google Scholar 

  44. Zhang, Y., Deng, S.F., Zhang, D.J., Chen, D.Y.: The N-soliton solutions for the non-isospectral mKdV equation. Phys. A 339, 228–236 (2004)

    Article  MathSciNet  Google Scholar 

  45. Liu, Y.Q., Wen, X.Y., Wang, D.S.: The N-soliton solution and localized wave interaction solutions of the (2+1)-dimensional generalized Hirota-Satsuma-Ito equation. Comput. Math. Appl. 77, 947–966 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  46. Ma, W.X., Yong, X., Zhang, H.Q.: Diversity of interaction solutions to the (2+1)-dimensional Ito equation. Comput. Math. Appl. 75, 289–295 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  47. Kanna, T., Lakshmanan, M.: Exact soliton solutions of coupled nonlinear Schrödinger equations: Shape-changing collisions, logic gates, and partially coherent solitons. Phys. Rev. E 67, 046617 (2003)

    Article  Google Scholar 

  48. Jiang, Y., Tian, B., Liu, W.J., Sun, K., Li, M., Wang, P.: Soliton interactions and complexes for coupled nonlinear Schrödinger equations. Phys. Rev. E 85, 036605 (2012)

    Article  Google Scholar 

Download references

Funding

This work is supported by Beijing Natural Science Foundation (No. 1222005), National Natural Science Foundation of China (Nos. 11905013), Qin Xin Talents Cultivation Program of Beijing Information Science and Technology University (QXTCP C202118) and the Scientific Research Common Program of Beijing Municipal Commission of Education under Grant (No. KM201911232011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaqing Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, WX., Liu, Y. Integrability and multisoliton solutions of the reverse space and/or time nonlocal Fokas–Lenells equation. Nonlinear Dyn 108, 2531–2549 (2022). https://doi.org/10.1007/s11071-022-07322-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07322-9

Keywords

Navigation