Skip to main content

Advertisement

Log in

Control of swing-up and giant-swing motions of Acrobot based on periodic input

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

A Correction to this article was published on 30 March 2022

This article has been updated

Abstract

In this paper, a control law to stabilize the energy for the swing-up and giant-swing motions of a two-link gymnastic robot (Acrobot) to a desired value by periodically changing the second link is proposed. First, the swing-up motion of an Acrobot around the lower equilibrium point and the giant-swing motion rotating continuously around the rotation axis are analyzed. The analysis is conducted using the averaging method when the second link of the Acrobot is moved periodically, and the averaged equations for both motions are derived. Next, the energy equations are derived by using the averaged equations, and an energy control law can be controlled from the swing-up motion to the giant-swing motion is designed. The derived nonlinear feedback control law modulates the amplitude of the periodic input according to the deviation from the desired energy. Our control method can control both the swing-up and giant-swing motions with a single controller. Finally, using the proposed control method, it is shown that the energy of the real Acrobot can be controlled to the desired values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets of the current study are available from the corresponding author on reasonable request.

Change history

References

  1. Arnold, V.I.: Mathematical methods of classical mechanics, 2nd edn., p. 119. Springer, New York (1989)

    Book  Google Scholar 

  2. Baker, G.L., Blackburn, J.A.: The Pendulum, pp. 45–51. Oxford University Press, New York (2005)

    Google Scholar 

  3. Kajiwara, H., Aoyagi, M.: Amplitude and rotational speed control of variable length pendulum by periodic input. Meccanica (2021). https://doi.org/10.1007/s11012-020-01299-8

    Article  MathSciNet  Google Scholar 

  4. Sankaranarayanan, V., Mahindrakar, A.D., Banavar, R.N.: A switched controller for an underactuated underwater vehicle. Commun Nonlinear Sci Numer Simul 13(10), 2266–2278 (2008)

    Article  MathSciNet  Google Scholar 

  5. Mehrez, M.W., El-Badawy, A.A.: Effect of the joint inertia on selection of under-actuated control algorithm for flexible-link manipulators. Mech Mac Theory 45(7), 967–980 (2010)

    Article  Google Scholar 

  6. Zarafshan, P., Moosavian, S.A.: Dynamics modelling and hybrid suppression control of space robots performing cooperative object manipulation. Commun Nonlinear Sci Numer Simul 18(10), 2807–2824 (2013)

    Article  MathSciNet  Google Scholar 

  7. Xin, X., Liu, Y.: Trajectory tracking control of variable length pendulum by partial energy shaping. Commun Nonlinear Sci Numer Simul 19(5), 1544–1556 (2014)

    Article  MathSciNet  Google Scholar 

  8. Yoe, M., An, C., Du, Y., Sun, J.: Indirect adaptive fuzzy control for a nonholonomic/underactuated wheeled inverted pendulum vehicle based on a data-driven trajectory planner. Fuzzy Sets Syst 290(1), 158–177 (2016)

    Article  MathSciNet  Google Scholar 

  9. Spong, M.W.: The swing up control problem for the acrobot. IEEE Control Syst. Mag. 15(1), 49–55 (1995)

    Article  Google Scholar 

  10. Xin, X., Kaneda, M.: Analysis of the energy-based swing-up control of the Acrobot. Int. J. Robust Nonlinear Control. 17(16), 1503–1524 (2007)

    Article  MathSciNet  Google Scholar 

  11. Zhang, A., She, J., Lai, X., Wu, M.: Motion planning and tracking control for an acrobot based on a rewinding approach. Automatica 49(1), 278–284 (2013)

    Article  MathSciNet  Google Scholar 

  12. Lai, X., She, J., Ohyama, Y., Cai, Z.: A fuzzy control strategy for acrobots combining model-free and model-based control. IEE Proc Control Theory Appl 146(6), 505–510 (1999)

    Article  Google Scholar 

  13. Mahindrakar, A., Astolfi, A., Ortega, R., Viola, G.: Further constructive results on interconnection and damping assignment control of mechanical systems the Acrobot example. Int. J. Robust Nonlinear 16(14), 671–685 (2006)

    Article  MathSciNet  Google Scholar 

  14. Zhang, A., Lai, X., Wu, M., She, J.: Stabilization of underactuated two-link gymnast robot by using trajectory tracking strategy. Appl. Math. Comput. 253, 193–204 (2015)

    MathSciNet  MATH  Google Scholar 

  15. Zhang, A., Qiu, J., Yang, C., He, H.: Stabilization of underactuated four-link gymnast robot using torque-coupled method. Int J Non Linear Mech 77, 299–306 (2015)

    Article  Google Scholar 

  16. Yoshimoto, J., Nishimura, M., Tokita, Y., Ishii, S.: Acrobot control by learning the switching of multiple controllers. Artif Life Robot 9, 67–71 (2005)

    Article  Google Scholar 

  17. Ono, K., Yamamoto, K., Imadu, A.: Control of giant swing motion of a two-link horizontal bar gymnastic robot. Adv Robot 15(4), 449–465 (2001)

    Article  Google Scholar 

  18. Liu, D., Yan, G., Yamaura, H.: Dynamic delayed feedback control for stabilizing the giant swing motions of an underactuated three-link gymnastic robot. Nonlinear Dyn. 78, 147–161 (2014)

    Article  Google Scholar 

  19. Matsuoka, K., Ohyama, N., Watanabe, A., Ooshima, M.: A giant swing robot using a neural oscillator. Int. Congr. Ser. 1291, 153–156 (2006)

    Article  Google Scholar 

  20. Uragami, D., Takahashi, T., Matsuo, Y.: Cognitively inspired reinforcement learning architecture and its application to giant-swing motion control. BioSystems 116, 1–9 (2014)

    Article  Google Scholar 

  21. Awrejcewicz, J., Krysko, A.V.: Introduction to asymptotic methods. Chapman and Hall/CRC Press, New York (2006)

    MATH  Google Scholar 

  22. Kennedy, E., King, E., Tran, H.: Real-time implementation and analysis of a modified energy based controller for the swing-up of an inverted pendulum on a cart. Eur J Control 50, 176–187 (2019)

    Article  MathSciNet  Google Scholar 

  23. Kai, T., Bito, K.: A new discrete mechanics approach to swing-up control of the cart-pendulum system. Commun Nonlinear Sci Numer Simul 19, 230–244 (2014)

    Article  MathSciNet  Google Scholar 

  24. Trentin, J.F.S., da Silva, S., Ribeiro, JMd.S., Schaub, H.: An experimental study to swing up and control a pendulum with two reaction wheels. Meccanica (2021). https://doi.org/10.1007/s11012-021-01311-9

    Article  MathSciNet  Google Scholar 

  25. Gutiérrez-Oribio, D., Mercado-Uribe, A., Moreno, J.A., Fridman, L.: Joint swing-up and stabilization of the reaction wheel pendulum using discontinuous integral algorithm. Nonlinear Anal-Hybri 41, 101042 (2021)

    Article  MathSciNet  Google Scholar 

  26. Brzeski, P., Perlikowski, P., Yanchuk, S., Kapitaniak, T.: The dynamics of the pendulum suspended on the forced Duffing oscillator. J Sound Vib 331(24), 5347–5357 (2012)

    Article  Google Scholar 

  27. Neishtadt, A.I., Sheng, K.: Bifurcations of phase portraits of pendulum with vibrating suspension point. Commun Nonlinear Sci Numer Simul 47, 71–80 (2017)

    Article  MathSciNet  Google Scholar 

  28. Xin, X., Tanaka, S., She, J., Yamasaki, T.: New analytical results of energy-based swing-up control for the Pendubot. Int J Non Linear Mech 52, 110–118 (2013)

    Article  Google Scholar 

Download references

Funding

The authors declare that they do not receive any funds from any organization for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidekazu Kajiwara.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 33423 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishiki, Y., Kajiwara, H. & Aoyagi, M. Control of swing-up and giant-swing motions of Acrobot based on periodic input. Nonlinear Dyn 108, 2297–2308 (2022). https://doi.org/10.1007/s11071-022-07312-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07312-x

Keywords

Navigation