Skip to main content
Log in

Singular soliton, shock-wave, breather-stripe soliton, hybrid solutions and numerical simulations for a (2+1)-dimensional Caudrey–Dodd–Gibbon–Kotera–Sawada system in fluid mechanics

Nonlinear Dynamics Aims and scope Submit manuscript

Cite this article

Abstract

In this paper, a (2+1)-dimensional Caudrey–Dodd–Gibbon–Kotera–Sawada system is investigated in fluid mechanics via the symbolic computation. With the help of the Hirota method, we derive some singular soliton, shock-wave, breather-stripe soliton and hybrid solutions. Based on the finite difference method, we get some numerical one-soliton solutions. We graphically show the singular and shock-wave solutions, and observe that the singular one-soliton solutions are explosive and unstable, but the shock-wave solutions are non-singular and stable. We observe that the breather-stripe soliton moves along the negative direction of the y axis, where y is a variable, and the amplitude and shape of the breather-stripe soliton remain invariant during the propagation. We graphically demonstrate the interaction among a rogue wave, a periodic wave and a pair of the stripe solitons: the rogue wave arises from the one stripe soliton; the rogue wave interacts with the periodic wave, the rogue wave splits into two waves and then the two waves merge into a wave; the rogue wave fuses with the other stripe soliton. We graphically present the numerical one-soliton solutions which agree with the analytic one-soliton solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Some or all data, models or code generated or used during the study are available from the corresponding author by request.

References

  1. Karabut, E.A., Zhuravleva, E.N., Zubarev, N.M.: Application of transport equations for constructing exact solutions for the problem of motion of a fluid with a free boundary. J. Fluid Mech. 890, A13 (2020)

    Article  MathSciNet  Google Scholar 

  2. Morris, J.F.: Toward a fluid mechanics of suspensions. Phys. Rev. Fluids 5, 110519 (2020)

    Article  Google Scholar 

  3. Aref, H., Balachandar, S.: A First Course in Computational Fluid Dynamics. Cambridge University Press, Cambridge (2018)

    Book  Google Scholar 

  4. Falkovich, G.: Fluid Mechanics. Cambridge University Press, Cambridge (2018)

    Book  Google Scholar 

  5. Wazwaz, A.M., Kaur, L.: New integrable Boussinesq equations of distinct dimensions with diverse variety of soliton solutions. Nonlinear Dyn. 97, 83–94 (2019)

    Article  Google Scholar 

  6. Mabrouk, S.M., Rashed, A.S.: \(N\)-Solitons, kink and periodic wave solutions for (3+1)-dimensional Hirota bilinear equation using three distinct techniques. Chin. J. Phys. 60, 48–60 (2019)

    Article  MathSciNet  Google Scholar 

  7. Liu, W.H., Zhang, Y.F.: High-order rational solutions and rogue wave for the (2+1)-dimensional nonlinear Schrödinger equation. Phys. Scripta 95, 045204 (2020)

    Article  Google Scholar 

  8. Yusuf, A., Sulaiman, T.A., Bayram, M.: Breather wave, lump-periodic solutions and some other interaction phenomena to the Caudrey–Dodd–Gibbon equation. Eur. Phys. J. Plus 135, 1–8 (2020)

    Article  Google Scholar 

  9. Kaur, L., Wazwaz, A.M.: Lump, breather and solitary wave solutions to new reduced form of the generalized BKP equation. Int. J. Numer. Method H. 29, 569–579 (2019)

    Article  Google Scholar 

  10. Kaur, L., Wazwaz, A.M.: Bright-dark lump wave solutions for a new form of the (3+ 1)-dimensional BKP-Boussinesq equation. Rom. Rep. Phys. 71, 1–11 (2019)

    Google Scholar 

  11. Kaur, L., Wazwaz, A.M.: Dynamical analysis of lump solutions for (3+1) dimensional generalized KP-Boussinesq equation and its dimensionally reduced equations. Phys. Scripta 93, 075203 (2018)

    Article  Google Scholar 

  12. Kaur, L., Wazwaz, A.M.: Bright-dark optical solitons for Schrödinger-Hirota equation with variable coefficients. Optik 179, 479–484 (2019)

    Article  Google Scholar 

  13. Feng, Y.J., Gao, Y.T., Li, L.Q., Jia, T.T.: Bilinear form, solitons, breathers and lumps of a (3+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt equation in ocean dynamics, fluid mechanics and plasma physics. Eur. Phys. J. Plus 135, 272 (2020)

    Article  Google Scholar 

  14. Feng, Y.J., Gao, Y.T., Jia, T.T., Li, L.Q.: Soliton interactions of a variable-coefficient three-component AB system for the geophysical flows. Mod. Phys. Lett. B 33, 1950354 (2019)

    Article  MathSciNet  Google Scholar 

  15. Su, J.J., Gao, Y.T., Deng, G.F., Jia, T.T.: Solitary waves, breathers, and rogue waves modulated by long waves for a model of a baroclinic shear flow. Phys. Rev. E 100, 042210 (2019)

    Article  MathSciNet  Google Scholar 

  16. Su, J.J., Gao, Y.T., Ding, C.C.: Darboux transformations and rogue wave solutions of a generalized AB system for the geophysical flows. Appl. Math. Lett. 88, 201–208 (2019)

    Article  MathSciNet  Google Scholar 

  17. Hu, L., Gao, Y.T., Jia, S.L., Su, J.J., Deng, G.F.: Solitons for the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation for an irrotational incompressible fluid via the Pfaffian technique. Mod. Phys. Lett. B 33, 1950376 (2019)

    Article  MathSciNet  Google Scholar 

  18. Hu, L., Gao, Y.T., Jia, T.T., Deng, G.F., Li, L.Q.: Higher-order hybrid waves for the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation for an irrotational incompressible fluid via the modified Pfaffian technique. Z. Angew. Math. Phys. 72, 75 (2021)

    Article  MathSciNet  Google Scholar 

  19. Jia, T.T., Gao, Y.T., Yu, X., Li, L.Q.: Lax pairs, Darboux transformation, bilinear forms and solitonic interactions for a combined Calogero-Bogoyavlenskii-Schiff-type equation. Appl. Math. Lett. 114, 106702 (2021)

    Article  Google Scholar 

  20. Jia, T.T., Gao, Y.T., Deng, G.F., Hu, L.: Quintic time-dependent-coefficient derivative nonlinear Schrödinger equation in hydrodynamics or fiber optics: bilinear forms and dark/anti-dark/gray solitons. Nonlinear Dyn. 98, 269–282 (2019)

    Article  Google Scholar 

  21. Deng, G.F., Gao, Y.T., Ding, C.C., Su, J.J.: Solitons and breather waves for the generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt system in fluid mechanics, ocean dynamics and plasma physics. Chaos Solitons Fract. 140, 110085 (2020)

    Article  MathSciNet  Google Scholar 

  22. Deng, G.F., Gao, Y.T., Su, J.J., Ding, C.C., Jia, T.T.: Solitons and periodic waves for the (2+1)-dimensional generalized Caudrey-Dodd-Gibbon-Kotera-Sawada equation in fluid mechanics. Nonlinear Dyn. 99, 1039–1052 (2020)

    Article  Google Scholar 

  23. Li, L.Q., Gao, Y.T., Yu, X., Deng, G.F., Ding, C.C.: Gramian solutions and solitonic interactions of a (2+1)-dimensional Broer-Kaup-Kupershmidt system for the shallow water. Int. J. Numer. Method. H. (2022) in press. https://doi.org/10.1108/HFF-07-2021-0441

  24. Ding, C.C., Gao, Y.T., Yu, X., Liu, F.Y., Wu, X.H.: Three-wave resonant interactions: dark-bright-bright mixed N-and high-order solitons, breathers, and their structures. Wave. Random Complex (2022) in press. https://doi.org/10.1080/17455030.2021.1976437

  25. Ding, C.C., Gao, Y.T., Hu, L., Deng, G.F., Zhang, C.Y.: Vector bright soliton interactions of the two-component AB system in a baroclinic fluid. Chaos Solitons Fract. 142, 110363 (2021)

    Article  MathSciNet  Google Scholar 

  26. Liu, F.Y., Gao, Y.T., Yu, X., Hu, L., Wu, X.H.: Hybrid solutions for the (2+1)-dimensional variable-coefficient Caudrey–Dodd–Gibbon–Kotera–Sawada equation in fluid mechanics. Chaos Solitons Fract. 152, 111355 (2021)

    Article  MathSciNet  Google Scholar 

  27. Wu, X.H., Gao, Y.T., Yu, X., Ding, C.C., Liu, F.Y., Jia, T.T.: Darboux transformation, bright and dark-bright solitons of an N-coupled high-order nonlinear Schrödinger system in an optical fiber. Mod. Phys. Lett. B (2022) in press. https://doi.org/10.1142/s0217984921505680

  28. Liu, F.Y., Gao, Y.T., Yu, X., Ding, C.C.: Wronskian, Gramian, Pfaffian and periodic-wave solutions for a (3+1)-dimensional generalized nonlinear evolution equation arising in the shallow water waves. Nonlinear Dyn. (2022) in press. https://doi.org/10.1007/s11071-022-07249-1

  29. Gao, X.Y., Guo, Y.J., Shan, W.R.: Optical waves/modes in a multicomponent inhomogeneous optical fiber via a three-coupled variable-coefficient nonlinear Schrödinger system. Appl. Math. Lett. 120, 107161 (2021)

    Article  Google Scholar 

  30. Li, L.Q., Gao, Y.T., Yu, X., Jia, T.T., Hu, L., Zhang, C.Y.: Bilinear forms, bilinear Bäcklund transformation, soliton and breather interactions of a damped variable-coefficient fifth-order modified Korteweg-de Vries equation for the surface waves in a strait or large channel, Chin. J. Phys. (2022) in press. https://doi.org/10.1016/j.cjph.2021.09.004

  31. Wang, X., Chen, Y.: Darboux transformations and \(N\)-soliton solutions of two (2+1)-dimensional nonlinear equations. Commun. Theor. Phys. 61, 423 (2014)

    Article  MathSciNet  Google Scholar 

  32. Yang, Z.H.: A series of exact solutions of (2+1)-dimensional CDGKS equation. Commun. Theor. Phys. 46, 807 (2006)

    Article  Google Scholar 

  33. Zhuang, J.H., Liu, Y.Q., Chen, X., Wu, J.J., Wen, X.Y.: Diverse solitons and interaction solutions for the (2+1)-dimensional CDGKS equation. Mod. Phys. Lett. B 33, 1950174 (2019)

    Article  MathSciNet  Google Scholar 

  34. Cao, C.W., Wu, Y.T., Geng, X.G.: On quasi-periodic solutions of the 2+1 dimensional Caudrey–Dodd–Gibbon–Kotera–Sawada equation. Phys. Lett. A 256, 59–65 (1999)

    Article  Google Scholar 

  35. Lü, N., Mei, J.Q., Zhang, H.Q.: Symmetry reductions and group-invariant solutions of (2+1)-dimensional Caudrey–Dodd–Gibbon–Kotera–Sawada equation. Commun. Theor. Phys. 53, 591 (2010)

    Article  MathSciNet  Google Scholar 

  36. Fang, T., Gao, C.N., Wang, H., Wang, Y.H.: Lump-type solution, rogue wave, fusion and fission phenomena for the (2+1)-dimensional Caudrey–Dodd–Gibbon–Kotera–Sawada equation. Mod. Phys. Lett. B 33, 1950198 (2019)

    Article  MathSciNet  Google Scholar 

  37. Li, W.T., Zhang, Z., Yang, X.Y., Li, B.: High-order breathers, lumps and hybrid solutions to the (2+ 1)-dimensional fifth-order KdV equation. Int. J. Mod. Phys. B 33, 1950255 (2019)

    Article  MathSciNet  Google Scholar 

  38. Meng, X.H.: The periodic solitary wave solutions for the (2+1)-dimensional fifth-order KdV equation. J. Appl. Math. Phys. 2, 639–643 (2014)

    Article  Google Scholar 

  39. Kang, X.R., Xian, D.Q., Dai, Z.D.: Non-traveling wave solutions for the (2+1)-D Caudrey–Dodd–Gibbon–Kotera–Sawada equation. Int. J. Numer. Method. H. 25, 617–628 (2015)

  40. Zhuang, J.H., Liu, Y.Q., Wu, J.J., Zhuang, P., Chen, X., Wen, X.Y.: The High Order Interaction Solutions Comprising Lump Solitons for the (2+1)-dimensional Caudrey–Dodd–Gibbon–Kotera–Sawada Equation. Authorea Preprints, (2022) in press. https://doi.org/10.22541/au.160137914.44290163

  41. Tang, Y.N., Tao, S.Q., Guan, Q.: Lump solitons and the interaction phenomena of them for two classes of nonlinear evolution equations. Comput. Math. Appl. 72, 2334–2342 (2016)

    Article  MathSciNet  Google Scholar 

  42. Wang, T.T., Liu, X.Q., Yu, J.Q.: Symmetries, exact solutions and conservation laws of Caudrey–Dodd–Gibbon–Kotera–Sawada equation. Chinese J. Quantum Elect. 28, 385 (2011)

  43. Zhuang, J.H., Liu, Y.Q., Zhuang, P.: Variety interaction solutions comprising lump solitons for the (2+1)-dimensional Caudrey–Dodd–Gibbon–Kotera–Sawada equation. AIMS Math. 6, 5370–5386 (2021)

  44. Hirota, R.: The Direct Method in Soliton Therory. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  45. Lu, D., Tariq, K.U., Osman, M.S., Baleanu, D., Younis, M., Khater, M.M.: New analytical wave structures for the (3+1)-dimensional Kadomtsev–Petviashvili and the generalized Boussinesq models and their applications. Results Phys. 14, 102491 (2019)

    Article  Google Scholar 

  46. Gai, L.T., Ma, W.X., Li, M.C.: Lump-type solution and breather lump-kink interaction phenomena to a (3+1)-dimensional GBK equation based on trilinear form. Nonlinear Dyn. 100, 2715–2727 (2020)

    Article  Google Scholar 

  47. Ullah, M.S., Roshid, H.O., Ma, W.X., Ali, M.Z., Rahman, Z.: Interaction phenomena among lump, periodic and kink wave solutions to a (3+1)-dimensional Sharma–Tasso–Olver-like equation. Chin. J. Phys. 68, 699–711 (2020)

    Article  MathSciNet  Google Scholar 

  48. Li, S.C., Li, X.G., Cao, J.J., Li, W.B.: High-order numerical method for the derivative nonlinear Schrödinger equation. Int. J. Model. Simul. Sci. Comput. 8, 1750017 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

We express our sincere thanks to the Editors and Reviewers for their valuable comments. This work has been supported by the National Natural Science Foundation of China under Grant Nos. 11772017, 11272023 and 11471050, by the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China (IPOC: 2017ZZ05) and by the Fundamental Research Funds for the Central Universities of China under Grant No. 2011BUPTYB02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Tian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human participants and/or animals

Research does not involve human participants and/or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, SH., Tian, B. Singular soliton, shock-wave, breather-stripe soliton, hybrid solutions and numerical simulations for a (2+1)-dimensional Caudrey–Dodd–Gibbon–Kotera–Sawada system in fluid mechanics. Nonlinear Dyn 108, 2471–2482 (2022). https://doi.org/10.1007/s11071-022-07279-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07279-9

Keywords

Navigation