Skip to main content
Log in

Time-delayed feedback control of nonlinear dynamics in a giant magnetostrictive actuator

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A time-delayed displacement and velocity feedback controller is designed to control the nonlinear dynamic characteristics, particularly principal resonance response, chaotic motion, and limit cycle amplitude, of a single-degree-of-freedom giant magnetostrictive actuator (GMA) system, thereby improving the stability of the system. This controller is established using the previously reported mechanical model of GMA system based on its structure and working principle. Further, the multi-scale method is used to solve the amplitude–frequency response equation and obtain the stability conditions for the time-delayed feedback control of the system’s primary resonance. The influence of each time-delayed feedback parameter on the stability of the primary resonance, chaotic motion, and limit cycle amplitude is examined. The results show that the displacement feedback gain coefficient can only shift the resonance curve to the left and right, while the velocity feedback gain coefficient and time delay parameters can effectively improve the stability and suppress the nonlinear vibration of the system. By increasing the negative displacement feedback gain coefficient and the negative velocity feedback gain coefficient, the system response can be tuned from chaotic motion to periodic motion. The feedback gain coefficient can be effectively used to control the amplitude of the limit loop of the system. Overall, by selecting appropriate time-delayed feedback parameters, the multi-valued solution of the primary resonance can be avoided, the stability of the system can be improved, the chaotic motion can be circumvented, and the limit cycle amplitude can be controlled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Liu, G., He, Z., Bai, G., Zheng, J., Zhou, J., Dai, B.: Modeling and experimental study of oil-cooled stacked giant magnetostrictive actuator for servo valve. Actuators 9, 37 (2020)

    Article  Google Scholar 

  2. Wang, M., Wang, Y., Fu, Y., Yang, R., Zhao, J., Fu, J.: Experimental investigation of an electro-hydrostatic actuator based on the novel active compensation method. IEEE Access 8, 170632–170649 (2020)

    Google Scholar 

  3. Fang, Z.-W., Zhang, Y.-W., Li, X., Chen, L.-Q.: Complexification-averaging analysis on a giant magnetostrictive harvester integrated with a nonlinear energy sink. J. Vib. Acoust. 140, 021009 (2017)

    Article  Google Scholar 

  4. Li, Y., et al.: A simple magnetization model for giant magnetostrictive actuator used on an electronic controlled injector. J. Magn. Magn. Mater. 472, 59–65 (2018)

    Article  Google Scholar 

  5. Wang, X., Wu, H., Yang, B.: Micro-vibration suppressing using electromagnetic absorber and magnetostrictive isolator combined platform. Mech. Syst. Signal Process. 139, 106606 (2020)

    Article  Google Scholar 

  6. Zhou, J., He, Z., Bai, G., Liu, G.: Angular displacement modeling and excitation signal optimization for a stepping giant magnetostrictive rotary actuator. Rev. Sci. Instrum. 90(12), 125002 (2019)

    Article  Google Scholar 

  7. Gao, X., Liu, Y.: Research of giant magnetostrictive actuator’s nonlinear dynamic behaviours. Nonlinear Dyn. 92, 793–802 (2018)

    Article  Google Scholar 

  8. Xue, G., et al.: A review of giant magnetostrictive injector (GMI). Sens. Actuators A Phys. 273, 151–189 (2018)

    Article  Google Scholar 

  9. Afzal, M., Kari, L., Lopez Arteaga, I.: Adaptive control of normal load at the friction interface of bladed disks using giant magnetostrictive material. J. Intell. Mater. Syst. Struct. 31, 1045389X2091026 (2020)

    Article  Google Scholar 

  10. Liu, F., Zhu, Z., Sheng, H., Xu, J.: Nonlinear dynamic characteristics and control of giant magnetostrictive ultrasonic transducer. J. Superconduct. Novel Magn. 32, 2015–2049 (2019)

    Article  Google Scholar 

  11. Zhang, C.L., Mei, D.Q., Chen, Z.C.: Active vibration isolation of a micro-manufacturing platform based on a neural network. J. Mater. Process. Technol. 129, 634–639 (2002)

    Article  Google Scholar 

  12. Nealis, J., Smith, R.: Robust control of a magnetostrictive actuator. In: Proceedings of SPIE—The International Society for Optical Engineering (2003)

  13. Zeng, H., Zeng, G.: Nonlinear behaviors of giant magnetostrictive high power ultrasonic transducer. Appl. Mech. Mater. 128–129, 918–922 (2011)

    Article  Google Scholar 

  14. Zhang, W., Meng, G., Wei, K.: Dynamic characteristics of electrostatically actuated MEMS under parametric excitations. Lixue Xuebao/Chin. J. Theor. Appl. Mech. 41, 282–288 (2009)

    Google Scholar 

  15. Yan, H., Niu, Y., Gao, H., Hao, H.: Research on chaos response of the nonlinear vibration system of giant magnetostrictive actuator. Math. Probl. Eng. 2020, 1–14 (2020)

    MathSciNet  Google Scholar 

  16. Wen, S.F., Shen, Y., Yang, S.: Dynamical analysis of Duffing oscillator with fractional-order feedback with time delay. Acta Phys. Sin. 65, 094502 (2016)

    Article  Google Scholar 

  17. Wiercigroch, M., Moon, F.C., Kalmár-Nagy, T.: Nonlinear models for complex dynamics in cutting materials. Philos. Trans. R. Soc. Lond. Ser. A 359(1781), 695–711 (2001)

    Article  MATH  Google Scholar 

  18. Kalmar-Nagy, T., Stépán, G., Moon, F.: Subcritical Hopf bifurcation in the delay equation model for machine tool vibrations. Nonlinear Dyn. 26, 121–142 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Das, S., Chatterjee, A.: Multiple Scales without Center manifold reductions for delay differential equations near Hopf bifurcations. Nonlinear Dyn. 30, 323–335 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wahi, P., Chatterjee, A.: Regenerative tool chatter near a codimension 2 hopf point using multiple scales. Nonlinear Dyn. 40, 323–338 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Peng, J., et al.: Nonlinear primary resonance in vibration control of cable-stayed beam with time delay feedback. Mech. Syst. Sig. Process. 137, 106488 (2020)

    Article  Google Scholar 

  22. Jiang, S., Li, W., Xin, G., Sheng, L., Fan, M., Yang, X.: Analysis of torsional vibration characteristics and time delay feedback control of semi-direct drive cutting transmission system in shearer. Chaos Solitons Fractals 132, 109607 (2020)

    Article  MathSciNet  Google Scholar 

  23. Liu, S., Zhao, S., Niu, B., Li, J., Li, H.: Stability analysis of a nonlinear electromechanical coupling transmission system with time delay feedback. Nonlinear Dyn. 86, 1863–1874 (2016)

    Article  MATH  Google Scholar 

  24. Maccari, A.: Vibration control for the primary resonance of the van der Pol oscillator by a time delay state feedback. Int. J. Non-Linear Mech. 38, 123–131 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Amer, Y., El-Sayed, A., Kotb, A.: Nonlinear vibration and of the Duffing oscillator to parametric excitation with time delay feedback. Nonlinear Dyn. 85, 2497–2505 (2016)

    Article  MathSciNet  Google Scholar 

  26. Zhao, Y., Xu, J.: Using the delayed feedback control and saturation control to suppress the vibration of the dynamical system. Nonlinear Dyn. 67, 735–753 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, C.X., Yan, Y., Wang, W.Q.: Primary and secondary resonance analyses of a cantilever beam carrying an intermediate lumped mass with time-delay feedback. Nonlinear Dyn. 97, 1175–1195 (2019)

    Article  MATH  Google Scholar 

  28. Liu, C.X., Yan, Y., Wang, W.Q.: Resonance and chaos of micro and nano electro mechanical resonators with time delay feedback. Nonlinear Dyn. 79, 469–489 (2020)

    MathSciNet  MATH  Google Scholar 

  29. Mondal, J., Chatterjee, S.: Controlling self-excited vibration of a nonlinear beam by nonlinear resonant velocity feedback with time-delay. Int. J. Non-Linear Mech. 131, 103684 (2020)

    Article  Google Scholar 

  30. Zhang, L., Lihong, H., Zhang, Z.: Stability and Hopf bifurcation of the maglev system with delayed position and speed feedback control. Nonlinear Dyn. 57, 197–207 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wahi, P., Chatterjee, A.: Averaging oscillations with small fractional damping and delayed terms. Nonlinear Dyn. 38, 3–22 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Patnaik, S., Hollkamp, J., Semperlotti, F.: Applications of variable-order fractional operators: a review. Proc. R. Soc. A Math. Phys. Eng. Sci. 476, 20190498 (2020)

    MathSciNet  MATH  Google Scholar 

  33. Reyes-Melo, M., Rentería-Baltiérrez, F., Lopez-Walle, B., Cuéllar, E., De Araújo, C.: Application of fractional calculus to modeling the dynamic mechanical analysis of a NiTi SMA ribbon. J. Therm. Anal. Calorim. 126, 593–599 (2016)

    Article  Google Scholar 

  34. Patnaik, S., Semperlotti, F.: Application of variable- and distributed-order fractional operators to the dynamic analysis of nonlinear oscillators. Nonlinear Dyn. 100, 561–580 (2020)

    Article  MATH  Google Scholar 

  35. Manzoor, D.T., Mehmood, Z., Zahid, M., Mohyud-Din, S., Manzoor, H.U., Hashmi, D.M.S.: A note on fractional order in thermo-elasticity of shape memory alloys’ dampers. Int. J. Heat Mass Transf. 114, 597–606 (2017)

    Article  Google Scholar 

  36. Zhouzhou, P., Liu, Z.: A novel fractional viscoelastic constitutive model for shape memory polymers. J. Polym. Sci. Part B Polym. Phys. 56, 1125–1134 (2018)

    Article  Google Scholar 

  37. Chandrashekar, A., Belardinelli, P., Staufer, U., Alijani, F.: Robustness of attractors in tapping mode atomic force microscopy. Nonlinear Dyn. 97, 1137–1158 (2019)

    Article  Google Scholar 

  38. Ibrahim, A., Towfighian, S., Younis, M.: Dynamics of transition regime in bi-stable vibration energy harvesters. J. Vib. Acoust. 139, 051008 (2017)

    Article  Google Scholar 

  39. Sun, H.G.: Coupled Magneto-Elastic Theory of Giant Magnetostrictive Transducer and Application in Cutting Machining. Northeastern University, New York (2008)

    Google Scholar 

  40. Hong-Bo, Y., Hong, G., Gao-Wei, Y., et al.: Bifurcation and chaos characteristics of hysteresis vibration system of giant magnetostrictive actuator. Chin. Phys. B 29(2), 20504 (2020)

    Article  Google Scholar 

  41. Dozor, D., Gerver, M., Swenbeck, J.: Nonlinear modeling for control of Terfenol-D-based actuators. SPIE Proceedingsr. 3039, 644–654 (1997)

    Article  Google Scholar 

  42. Lu, W.S.: Computational Design and Manufacturing of DiscSpring. Fudan University Press, Shanghai (1990)

    Google Scholar 

  43. Jiashi, T., et al.: Bifurcation Control in Nonlinear Systems. Science Press, Beijing (2016)

    Google Scholar 

  44. Nayfeh, A., Mook, D., Holmes, P.: Nonlinear oscillations. J. Appl. Mech. 47, 692 (1980)

    Article  Google Scholar 

  45. Yanzhu, L., Liqun, C.: Nonlinear Vibration, pp. 83–94. Higher Education Press, Beijing (2001)

    Google Scholar 

  46. Ji-qing, Z., Yin-yuan, Z.: Nonlinear Oscillations. Xi’an Jiaotong University Press, Xi’an (1998)

    Google Scholar 

  47. Tianyu, Z., et al.: Study on the rare-earth giant magnetostrictive actuator based on experimental and theoretical analysis. J. Magn. Mag. Mater. 460, 509–524 (2018)

    Article  Google Scholar 

Download references

Funding

This work is supported by National Key R&D Program of China (2021YFC2202801) and the National Natural Science Foundation of China (Grant No.11772018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gao Hong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data availability

Some or all data, models, or code generated or used during the study are available from the corresponding author on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, G., Zhongmin, D., Yanlin, Z. et al. Time-delayed feedback control of nonlinear dynamics in a giant magnetostrictive actuator. Nonlinear Dyn 108, 1371–1394 (2022). https://doi.org/10.1007/s11071-022-07265-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07265-1

Keywords

Navigation