Skip to main content
Log in

Elastic wave propagation in nonlinear two-dimensional acoustic metamaterials

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This study describes the wave propagation in a periodic lattice which is formed by a spring-mass two-dimensional structure with local Duffing nonlinear resonators. The wave propagation characteristics of the system are evaluated by using the perturbation method to determine the dispersion relationships and wave propagation characteristics in the nonlinear two-dimensional acoustic metamaterials. A quantitative study of wave amplitude is carried out to determine the maximum allowable wave amplitude for the whole structures under the assumption of small parameters. In particular, the harmonic balance method is introduced to investigate the frequency response and effective mass of the nonlinear systems. We find that the dispersion relations and group velocity of unit cell are related to wave amplitude. Furthermore, the dual-wave vector is observed in the nonlinear systems. Numerical simulations validate the dispersion analytical results. The results can be used to tune wave propagation in the nonlinear acoustic metamaterials and provide some ideas for the study of nonlinear metamaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Gibson, L.J., Ashby, M.F.: Cellular solids: structure and properties. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  2. Zelhofer, A.J., Kochmann, D.M.: On acoustic wave beaming in two-dimensional structural lattices. Int. J. Solids Struct. 115–116, 248–269 (2017)

    Google Scholar 

  3. Xu, G.D.: Mechanical response of carbon/epoxy composite sandwich structures with three-dimensional corrugated cores. Compos. Sci. Technol. 156, 296–304 (2018)

    Google Scholar 

  4. Arunkumar, M.P.: Vibro-acoustic response and sound transmission loss characteristics of truss core sandwich panel filled with foam. Aerosp. Sci. Technol. 78, 1–11 (2018)

    Google Scholar 

  5. Billon, K.: Mechanics and band gaps in hierarchical auxetic rectangular perforated composite metamaterials. Compos. Struct. 160, 1024–1050 (2017)

    Google Scholar 

  6. Ruzzene, M.: Wave propagation in sandwich plates with periodic auxetic core. J. Intel. Mat. Syst. Str. 13(9), 587–597 (2002)

    Google Scholar 

  7. Zhang, K., et al.: Wave propagation properties of rotationally symmetric lattices with curved beams. J. Acoust. Soc. Am. 148(3), 1567–1584 (2020)

    Google Scholar 

  8. Liu, L., Hussein, M.I.: Wave motion in periodic flexural beams and characterization of the transition between bragg scattering and local resonance. J. Appl. Mech. (2012). https://doi.org/10.1115/1.4004592

    Article  Google Scholar 

  9. Liu, Z., et al.: Locally resonant sonic materials. Phys. B. 338(5485), 201–205 (2000)

    Google Scholar 

  10. Achaoui, Y., Laude, V., Benchabane, S., Khelif, A.: Local resonances in phononic crystals and in random arrangements of pillars on a surface. J. Appl. Phys. 114, 104503-1–104503-4 (2013). https://doi.org/10.1063/1.4820928

    Article  Google Scholar 

  11. Zhao, P., et al.: Multi-resonator coupled metamaterials for broadband vibration suppression. Appl. Math. Mech. 42(1), 53–64 (2021)

    MathSciNet  Google Scholar 

  12. Wang, P., et al.: Harnessing buckling to design tunable locally resonant acoustic metamaterials. Phys. Rev. Lett. 113(1), 014301 (2014)

    Google Scholar 

  13. Ma, G., et al.: Acoustic metasurface with hybrid resonances. Nat. Mater. 13(9), 873–878 (2014)

    Google Scholar 

  14. Li, J., Chan, C.T.: Double-negative acoustic metamaterial. Phys. Rev. E 70(5), 055602 (2004)

    Google Scholar 

  15. Yao, S., Zhou, X., Hu, G.: Experimental study on negative effective mass in a 1D mass–spring system. New J. Phys. 10(4), 043020 (2008)

    Google Scholar 

  16. Zhang, K., et al.: Tunable wave propagation in octa-chiral lattices with local resonators. Compos. Struct. 220, 114–126 (2019)

    Google Scholar 

  17. Yu, D., et al.: Flexural vibration band gaps in Timoshenko beams with locally resonant structures. J. Appl. Phys. 100(12), 1734 (2006)

    Google Scholar 

  18. Sugino, C., et al.: A general theory for bandgap estimation in locally resonant metastructures. J. Sound Vib. 406, 104–123 (2017)

    Google Scholar 

  19. Amromin, E., Kovinskaya, S.: Vibration of cavitating elastic wing in a periodically perturbed flow: excitation of subharmonics. J. Fluid Struct. 14(5), 735–751 (2000)

    Google Scholar 

  20. Silling, S.A.: Solitary waves in a peridynamic elastic solid. J. Mech. Phys. Solids. 96, 121–132 (2016)

    MathSciNet  MATH  Google Scholar 

  21. Liu, Y., et al.: Quasi-phase-matching of the dual-band nonlinear left-handed metamaterial. Appl. Phys. Lett. 105(20), 037401 (2014)

    Google Scholar 

  22. Jo, S.H., et al.: Experimentally validated broadband self-collimation of elastic waves. Int. J. Mech. Sci. 192, 106131 (2021)

    Google Scholar 

  23. Nassar, H., et al.: Non-reciprocal wave propagation in modulated elastic metamaterials. P. R. Soc. A-Math. Phys. 473(2202), 20170188 (2017)

    MathSciNet  MATH  Google Scholar 

  24. Ide, Y., Ito, K., Tanno, H.: Nonlinear resonance of low- and high-frequency waves in a cooled hypersonic boundary-layer. Fluid Dyn. Res. 52(5), 055502 (2020). https://doi.org/10.1088/1873-7005/aba5f3

    Article  Google Scholar 

  25. Hickey, D., et al.: Higher-order spectra for identification of nonlinear modal coupling. Mech. Syst. Signal Process. 23(4), 1037–1061 (2009)

    Google Scholar 

  26. Nayfeh, A.H., Mook, D.T., Holmes, P.: Nonlinear oscillations. J. Appl. Mech. 47(3), 692 (1980)

    Google Scholar 

  27. Geniet, F., Leon, J.: Energy transmission in the forbidden bandgap of a nonlinear chain. Phys. Rev. Lett. 89(13), 134102 (2002)

    Google Scholar 

  28. Meurer, T., Qu, J., Jacobs, L.J.: Wave propagation in nonlinear and hysteretic media—A numerical study. Int. J. Solids Struct. 39(21–22), 5585–5614 (2002)

    MATH  Google Scholar 

  29. Geniet, F., Leon, J.: Nonlinear supratransmission. J. Phys.-Condens. Mat. 15(17), 2933 (2003)

    MATH  Google Scholar 

  30. Daqaq, M.F., et al.: On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion. Appl. Mech. Rev. 66(4), 040801 (2014)

    Google Scholar 

  31. Erturk, A., Hoffmann, J., Inman, D.J.: A piezomagnetoelastic structure for broadband vibration energy harvesting. Appl. Phys. Lett. 94(25), 254102 (2009)

    Google Scholar 

  32. Harne, R.L., Wang, K.W.: A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater. Struct. 22(2), 023001 (2013)

    Google Scholar 

  33. Higashiyama, N., Doi, Y., Nakatani, A.: Nonlinear dynamics of a model of acoustic metamaterials with local resonators. Nonlinear Theory Appl. IEICE 8(2), 129–145 (2017)

    Google Scholar 

  34. Cveticanin, L., Zukovic, M.: Negative effective mass in acoustic metamaterial with nonlinear mass-in-mass subsystems. Commun Nonlinear Sci. 51(OCT), 89–104 (2017)

    MathSciNet  MATH  Google Scholar 

  35. Zhou, W.J., et al.: Spectro-spatial analysis of wave packet propagation in nonlinear acoustic metamaterials. J. Sound Vib. 413, 250–269 (2018)

    Google Scholar 

  36. Ganesh, R., Gonella, S.: Spectro-spatial wave features as detectors and classifiers of nonlinearity in periodic chains. Wave Motion 50, 821–835 (2013)

    MATH  Google Scholar 

  37. Bukhari, M., Barry, O.: Spectro-spatial analyses of a nonlinear metamaterial with multiple nonlinear local resonators. Nonlinear Dyn. 99, 1539–1560 (2019)

    Google Scholar 

  38. Gantzounis, G., et al.: Granular metamaterials for vibration mitigation. J. Appl. Phys. 114(9), 093514 (2013)

    Google Scholar 

  39. Khajehtourian, R., Hussein, M.I.: Dispersion characteristics of a nonlinear elastic metamaterial. AIP Adv. 4(12), 124308 (2014)

    Google Scholar 

  40. Bilal, O.R., Foehr, A., Daraio, C.: Bistable metamaterial for switching and cascading elastic vibrations. P. Natl. A Sci. 114(12), 201618314 (2017)

    Google Scholar 

  41. Manktelow, K., et al.: Finite-element based perturbation analysis of wave propagation in nonlinear periodic structures. Mech. Syst. Signal Process. 39(1–2), 32–46 (2013)

    MathSciNet  Google Scholar 

  42. Manktelow, K., Narisetti, R.K., Leamy, M.J., Ruzzene, M.: Finite-element based perturbation analysis of wave propagation in nonlinear periodic structures. Mech. Syst. Signal Process. 39, 32–46 (2013)

    Google Scholar 

  43. Narisetti, R.K., Ruzzene, M., Leamy, M.J.: A perturbation approach for analyzing dispersion and group velocities in two-dimensional nonlinear periodic lattices. J. Vib. Acoust. 133(6), 061020 (2011)

    Google Scholar 

  44. Nayfeh, A.H.: Introduction to perturbation techniques [M], pp. 14–15. John Wiley and Sons Press, New York (1981)

    Google Scholar 

  45. Fang, X., Wen, J., Yin, J., Yu, D.: Wave propagation in nonlinear metamaterial multi-atomic chains based on homotopy method. AIP Adv. 6, 121706 (2016). https://doi.org/10.1063/1.4971761

    Article  Google Scholar 

  46. Manktelow, K., Leamy, M.J., Ruzzene, M.: Multiple scales analysis of wave–wave interactions in a cubically nonlinear monoatomic chain. Nonlinear Dyn. 63, 193–203 (2010)

    MathSciNet  MATH  Google Scholar 

  47. Lepidi, M., Bacigalupo, A.: Wave propagation properties of one-dimensional acoustic metamaterials with nonlinear diatomic microstructure. Nonlinear Dyn. 98, 2711–2735 (2019)

    MATH  Google Scholar 

  48. Reda, H., Karathanasopoulos, N., Ganghoffer, J.F., Lakiss, H.: Wave propagation characteristics of periodic structures accounting for the effect of their higher order inner material kinematics. J. Sound Vib. 431, 265–275 (2018)

    Google Scholar 

  49. Bae, M.H., Oh, J.H.: Amplitude-induced bandgap: New type of bandgap for nonlinear elastic metamaterials. J. Mech. Phys. Solids 139, 103930 (2020). https://doi.org/10.1016/j.jmps.2020.103930

    Article  MathSciNet  Google Scholar 

  50. Farzbod, F., Leamy, M.J.: Analysis of Bloch's method and the propagation technique in periodic structures. J. Vib. Acoust. 133(3), (2011). https://doi.org/10.1115/1.4003202

    Article  Google Scholar 

  51. Maurin, F., Claeys, C., Deckers, E., Desmet, W.: Probability that a band-gap extremum is located on the irreducible Brillouin-zone contour for the 17 different plane crystallographic lattices. Int. J. Solids Struct. 135, 26–36 (2018)

    Google Scholar 

  52. Manktelow, K.L., Leamy, M.J., Ruzzene, M.: Weakly nonlinear wave interactions in multi-degree of freedom periodic structures. Wave Motion 51, 886–904 (2014)

    MathSciNet  MATH  Google Scholar 

  53. Manktelow, K. L., Leamy, M. J., Ruzzene, M.: Intensity-Dependent Dispersion in Nonlinear Phononic Layered Systems. In: ASME 2011 International Mechanical Engineering Congress and Exposition (2011)

Download references

Acknowledgements

The authors would also like to appreciate Associate Professor Xin Fang, National University of Defense Technology, for innumerable helpful discussions.

Funding

Funding for this work has been provided by the National Natural Science Foundation of China (Nos. 11872313 and12172297) and Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University (Grant Number: CX2021071).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, C., Zhang, K., Zhao, P. et al. Elastic wave propagation in nonlinear two-dimensional acoustic metamaterials. Nonlinear Dyn 108, 743–763 (2022). https://doi.org/10.1007/s11071-022-07259-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07259-z

Keywords

Navigation