Skip to main content
Log in

Vibration analysis of permanent magnet synchronous motor using coupled finite element analysis and optimized meshless method

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Conventional finite element analysis (FEA) performed in electromagnetic-vibration coupling calculation of motor suffers from several significant drawbacks, such as large memory space, high computational cost and heavy reliance on mesh quality for accurate solution. With the traditional meshless method, special attention needs to be paid to correctly impose the boundary condition like FEA. Besides, the matrix is easily prone to be ill-conditioned due to introducing large amount of higher-order basis functions. We propose a novel multi-physical coupling method combining FEA and optimized meshless method. The proposed methodology is further evaluated on the vibration analysis of a 12-slot 10-pole permanent magnet synchronous motor (PMSM). Firstly, 2D stator electromagnetic force is simulated and derived based on the local Jacobian derivative method through FEA. The electromagnetic force spectrum is calculated using FFT analysis and further imported into commercial meshless structural simulation software SimSolid for stator harmonic response analysis. Correct force boundary condition and data mapping between meshless and FEA simulation interface are key to the accuracy of the proposed combined multi-physical modeling methodology. This is achieved by introducing new high-dimensional ramp function in the transition region between FEA and meshless domains, which are defined with the shape functions composed of the FEA and meshless method. This function satisfies the continuity and consistency of the displacement function and ensures the convergence of coupled FEA-meshless method. Subsequently, construction of basis function is key to the establishment of convention meshless discrete equation for the elastic problem of rotating machinery. This is designed by using moving least square theory in cylindrical coordinate system. A harmonic response with meshless method is analyzed by using the mode superposition method to obtain detailed mode shape data, acceleration and displacement distribution of stator. Finally, the tangential continuity and robustness are not well considered in the traditional simulation with FEA coupled meshless method. To mitigate this problem, we propose an optimized meshless method based on modified local basis functions to recalculate the harmonic response motion. Then, the coupling electromagnetic-vibration simulation results of traditional coupled FEA-meshless method, optimized coupled FEA-meshless method and complete FEA coupled method are compared. It is worth noting that the optimized method significantly improves accuracy, robustness and computational speed at the same time. In short, the proposed electromagnetic-structure coupling calculation method provides a novel alternative for the multi-physical coupling calculation of rotating machinery combining FEA and meshless simulation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wang, Y., Zhu, Z.Q., Feng, J.H., et al.: Investigation of unbalanced magnetic force in fractional-slot permanent magnet machines having an odd number of stator slots. IEEE Trans. Energy Convers. 34(4), 1954–1963 (2020)

    Google Scholar 

  2. Lin, F., Zuo, S.Q., Deng, W.Z., et al.: Reduction of vibration and acoustic noise in permanent magnet synchronous motor by optimizing magnetic forces. J. Sound Vib. 429, 193–205 (2018)

    Google Scholar 

  3. You, Y.M.: Multi-objective optimization of a permanent magnet synchronous motor based on an automated design and analysis procedure. Micro Syst. Technol.-Micro- Process. Syst. 34(11), 3477–3488 (2020)

    Google Scholar 

  4. Hong, J.F., Wang, S.M., Sun, Y.G., et al.: Piecewise stagger poles with continuous skew edge for vibration reduction in surface-mounted. IEEE Trans. Ind. Electron. 68(9), 8498–8506 (2021)

    Google Scholar 

  5. Mao, Y.N., Zhao, W.X., Zhu, S.D., et al.: Vibration investigation of spoke-type PM machine with asymmetric rotor considering modulation effect of stator teeth. IEEE Trans. Ind. Electron. 68(10), 9092–9103 (2021)

    Google Scholar 

  6. Hu, S.L., Zuo, S.G., Liu, M.T., et al.: Modeling and analysis of radial electromagnetic force and vibroacoustic behavior in switched reluctance motors. Mech. Syst. Signal Process. 142, 106778 (2020)

    Google Scholar 

  7. Wu, L.J., Zhu, Z.Q., Station, D.A., et al.: Comparison of analytical models of cogging torque in surface-mounted PM machines. IEEE Trans. Ind. Electron. 59(6), 2414–2425 (2012)

    Google Scholar 

  8. Zarko, D., Ban, D., Lipo, T.A., et al.: Analytical solution for electromagnetic torque in surface permanent-magnet motors using conformal mapping. IEEE Trans. Magn. 45(7), 2943–2954 (2009)

    Google Scholar 

  9. Zhang, W.J., Xu, Y.L., Zhou, G.X.: Research on a novel transverse flux permanent magnet motor with hybrid stator core and disk-type rotor for industrial robot applications. IEEE Trans. Ind. Electron. 68(11), 11223–11233 (2021)

    Google Scholar 

  10. Sun, S.L., Leng, F.G., Su, X.K., et al.: Performance of a novel dual-magnet tri-stable piezoelectric energy harvester subjected to random excitation. Energy Convers. Manag. 239, 114246 (2021)

    Google Scholar 

  11. Zhou, Y., Xue, Z.Q.: Analytical method for calculating the magnetic field of spoke-type permanent magnet machines accounting for eccentric magnetic pole. IEEE Trans. Ind. Electron. 68(3), 2096–2107 (2021)

    Google Scholar 

  12. Deng, W.Z., Zuo, S.G.: Analytical modeling of the electromagnetic vibration and noise for an external rotor axial flux in-wheel motor. IEEE Trans. Ind. Electron. 65(3), 1991–2000 (2018)

    Google Scholar 

  13. Fang, H.Y., Li, D.W., Qu, R.H., et al.: Modulation effect of slotted structure on vibration response in electrical machines. IEEE Trans. Ind. Electron. 66(4), 2998–3007 (2019)

    Google Scholar 

  14. Zhang, Z.H., An, Y.J., Li, M., et al.: Influence of asymmetrical stator axes on the performance and multi-physical field of canned permanent magnet machine for vacuum dry pump with vector converter supply. IEEE Trans. Energy Convers. 35(4), 2129–2140 (2020)

    Google Scholar 

  15. Cao, Y., Yao, L.Q., Yin, L.: New treatment of essential boundary conditions in EFG method by coupling with RPIM. Acta Mech. Solida Sin. 26(3), 302–316 (2013)

    Google Scholar 

  16. Pal, R.S.C., Mohanty, A.R.: A simplified dynamical model of mixed eccentricity fault in a three-phase induction motor. IEEE Trans. Ind. Electron. 68(5), 4341–4350 (2021)

    Google Scholar 

  17. Guo, Y.F., Hai, Y.Q.: Adaptive surface mesh remeshing based on a sphere packing method and a node insertion/deletion method. Appl. Math. Model. 98, 1–13 (2021)

    MathSciNet  MATH  Google Scholar 

  18. Liang, W., Luk, P.C., Fei, W.: Analytical investigation of sideband electromagnetic vibration in integral-slot PMSM drive with SVPWM technique. IEEE Trans. Power Electron. 32(6), 4785–4795 (2017)

    Google Scholar 

  19. Zhang, Y.Q., Ge, W.J., Zhang, Y.H., et al.: Topology optimization of hyperelastic structure based on a directly coupled finite element and element-free Galerkin method. Adv. Eng. Softw. 123, 25–37 (2018)

    Google Scholar 

  20. Kumar, S., Singh, I.V., Mishra, B.K., et al.: A coupled finite element and element-free Galerkin approach for the simulation of stable crack growth in ductile materials. Theor. Appl. Fract. Mech. 70, 49–58 (2014)

    Google Scholar 

  21. Bourantas, G., Zwick, B.F., Joldes, G.R., et al.: Simple and robust element-free Galerkin method with almost interpolating shape functions for finite deformation elasticity. Appl. Math. Model. 96, 284–303 (2021)

    MathSciNet  MATH  Google Scholar 

  22. Chen, L., Li, X.: Boundary element-free methods for exterior acoustic problems with arbitrary and high wave numbers. Appl. Math. Model. 72(4), 85–103 (2019)

    MathSciNet  MATH  Google Scholar 

  23. Boroomand, B., Parand, S.: Towards a general interpolation scheme. Comput. Methods Appl. Mech. Eng. 381, 113830 (2021)

    MathSciNet  MATH  Google Scholar 

  24. Zhang, H., Sladek, J., Sladek, V., et al.: Fracture analysis of functionally graded material by hybrid meshless displacement discontinuity method. Eng. Fract. Mech. 371, 107591 (2021)

    Google Scholar 

  25. Wu, C.J., Wang, D.D.: An accuracy analysis of Galerkin meshfree methods accounting for numerical integration. Comput. Methods Appl. Mech. Eng. 375, 113631 (2021)

    MathSciNet  MATH  Google Scholar 

  26. Fornberg, B., Flyer, N.: Solving PDEs with radial basis functions. Acta Numer. 24, 215–258 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Crespo, A.J.C., Dominguez, J.M., Rogers, B.D., et al.: DualSPHysics: open-source parallel CFD solver based on smoothed particle hydrodynamics (SPH). Comput. Phys. Commun. 187, 204–216 (2015)

    MATH  Google Scholar 

  28. Habibirad, A., Roohi, R., Hesameddini, E., et al.: A reliable algorithm to determine the pollution transport within underground reservoirs: implementation of an efficient collocation meshless method based on the moving Kriging interpolation. Eng. Comput. (2021). https://doi.org/10.1007/s00366-021-01430-7. (early access)

    Article  Google Scholar 

  29. Wang, L.H., Qian, Z.B.: A meshfree stabilized collocation method (SCM) based on reproducing kernel approximation. Comput. Methods Appl. Mech. Eng. 371, 113303 (2020)

    MathSciNet  MATH  Google Scholar 

  30. Wu, S.W., Xiang, Y.: A weak-form meshfree coupled with infinite element method for predicting acoustic radiation. Eng. Anal. Bound. Elem. 107, 63–78 (2019)

    MathSciNet  MATH  Google Scholar 

  31. Li, S.Q., Ling, L.: Collocation methods for Cauchy problems of elliptic operators via conditional stabilities. Commun. Comput. Phys. 26(3), 785–805 (2019)

    MathSciNet  MATH  Google Scholar 

  32. Abbaszadeh, M., Dehghan, M.: Numerical investigation of reproducing kernel particle Galerkin method for solving fractional modified distributed-order anomalous sub-diffusion equation with error estimation. Appl. Math. Comput. 392, 125718 (2021)

    MathSciNet  MATH  Google Scholar 

  33. Liu, Z., Wei, G.W., Wang, Z.M.: The radial basis reproducing kernel particle method for geometrically nonlinear problem of functionally graded materials. Appl. Math. Model. 85, 244–272 (2020)

    MathSciNet  MATH  Google Scholar 

  34. Chen, L., Cheng, Y.M.: The complex variable reproducing kernel particle method for bending problems of thin plates on elastic foundations. Comput. Mech. 26(3), 67–80 (2018)

    MathSciNet  MATH  Google Scholar 

  35. Lu, Y.Y., Belytschko, T., Gu, L.: A new implementation of the element Free Galerkin method. Comput. Methods Appl. Mech. Eng. 113(3–4), 397–411 (1994)

    MathSciNet  MATH  Google Scholar 

  36. Lopes, I.A., Ferreira, B.P., Pries, F.M.: On the efficient enforcement of uniform traction and mortar periodic boundary conditions in computational homogenisation. Comput. Methods Appl. Mech. Eng. 384, 113930 (2021)

    MathSciNet  MATH  Google Scholar 

  37. Moghaddam, M.R., Baradaran, G.H.: Three-dimensional free vibrations analysis of functionally graded rectangular plates by the meshless local Petrov–Galerkin (MLPG) method. Appl. Math. Comput. 304, 153–163 (2017)

    MathSciNet  MATH  Google Scholar 

  38. Liu, Z., Gao, H.F., Wei, G.F., et al.: The meshfree analysis of elasticity problem utilizing radial basis reproducing kernel particle method. Results Phys. 17, 103037 (2020)

    Google Scholar 

  39. Lluch, E., Camara, O., Doste, R., et al.: Calibration of a fully coupled electromechanical meshless computational model of the heart with experimental data. Comput. Methods Appl. Mech. Eng. 364, 112869 (2020)

    MathSciNet  MATH  Google Scholar 

  40. Tong, L., Yang, P.Y., Liu, M.B.: A novel coupling approach of smoothed finite element method with SPH for thermal fluid structure interaction problems. Int. J. Mech. Sci. 174, 105558 (2020)

    Google Scholar 

  41. Zhang, X., Liu, Y.: Meshless Methods. Tsinghua University Press, Beijing (2004)

    Google Scholar 

  42. Belytschko, T., Organ, D., Krongauz, Y.: A coupled finite element-element-free Galerkin method. Comput. Mech. 17(3), 186–195 (1995)

    MathSciNet  MATH  Google Scholar 

  43. Dolbow, J., Belytschko, T.: Volumetric locking in the element free Galerkin method. Int. J. Numer. Methods Eng. 46(6), 925–942 (1999)

    MathSciNet  MATH  Google Scholar 

  44. Li, X.L., Li, S.L.: Analyzing the nonlinear p-Laplacian problem with the improved element-free Galerkin method. Eng. Anal. Bound. Elem. 100, 48–58 (2019)

    MathSciNet  MATH  Google Scholar 

  45. Yuan, S., Du, J.N.: Upper bound limit analysis using the weak form quadrature element method. Appl. Math. Model. 56, 551–563 (2018)

    MathSciNet  MATH  Google Scholar 

  46. Hegen, D.: Element-free Galerkin methods in combination with finite element approaches. Comput. Methods Appl. Mech. Eng. 135, 143–166 (1996)

    MATH  Google Scholar 

  47. Liu, G.R., Gu, Y.T.: An Introduction to Meshless Methods and Their Programming. Springer, Dordrecht (2005)

    Google Scholar 

  48. Yang, J.J., Wen, P.H.: Meshless Methods: Theories and Approaches. Science Press, Beijing (2018)

    Google Scholar 

  49. Wu, Q., Liu, F.B., Cheng, Y.M.: The interpolating element-free Galerkin method for three-dimensional elastoplasticity problems. Eng. Anal. Bound. Elem. 115, 156–167 (2020)

    MathSciNet  MATH  Google Scholar 

  50. Joldes, G., Boutantas, G., Zwick, B., et al.: Suite of meshless algorithms for accurate computation of soft tissue deformation for surgical simulation. Med. Image Anal. 56, 152–171 (2019)

    Google Scholar 

  51. Milewski, S., Putanowicz, R.: Higher order meshless schemes applied to the finite element method in elliptic problems. Comput. Math. Appl. 77(3), 779–802 (2019)

    MathSciNet  MATH  Google Scholar 

  52. Saravanan, T.J.: Convergence study on ultrasonic guided wave propagation modes in an axisymmetric cylindrical waveguide. Mech. Adv. Mater. Struct. (2020). https://doi.org/10.1080/15376494.2020.1842949. (early access)

    Article  Google Scholar 

  53. Nemer, R., Larcher, A., Coupez, T., et al.: Stabilized finite element method for incompressible solid dynamics using an updated Lagrangian formulation. Comput. Methods Appl. Mech. Eng. 384, 113923 (2021)

    MathSciNet  MATH  Google Scholar 

  54. Rossi, R., Zorrilla, R., Codina, R.: A stabilised displacement-volumetric strain formulation for nearly incompressible and anisotropic materials. Comput. Methods Appl. Mech. Eng. 377, 113701 (2021)

    MathSciNet  MATH  Google Scholar 

  55. Li, Q.M., Zhong, W., Liu, Y.Q., et al.: A new locking-free hexahedral element with adaptive subdivision for explicit coining simulation. Int. J. Mech. Sci. 128, 105–115 (2017)

    Google Scholar 

  56. Nguyen, D.D., Nguyen, M.N., Nguyen, N.D., et al.: Enhanced nodal gradient finite elements with new numerical integration schemes for 2D and 3D geometrically nonlinear analysis. Appl. Math. Model. 93(1), 326–359 (2021)

    MathSciNet  MATH  Google Scholar 

  57. Birda, A., Reuss, J., Hackl, C.M.: Synchronous optimal pulse width modulation for synchronous machines with highly operating point dependent magnetic anisotropy. IEEE Trans. Ind. Electron. 68(5), 3760–3769 (2021)

    Google Scholar 

  58. Xu, X.P., Han, Q.K.: A general electromagnetic model and vibration control for shape deviations in PMSM supported by three-pole active magnetic bearings. Mech. Syst. Signal Process. 158, 107710 (2021)

    Google Scholar 

  59. Lv, Y.J., Cheng, S.W., Ji, Z.K., et al.: Permeance distribution function: a powerful tool to analyze electromagnetic forces induced by PWM current harmonics in multiphase surface permanent-magnet Motors. IEEE Trans. Ind. Electron. 35(7), 7379–7391 (2021)

    Google Scholar 

  60. Li, W.L., Wu, Z.G., Tang, H.Y., et al.: Research on multi-physical fields of high-power PMSM/G used for FESS during the process of controllable charging and uncontrollable discharging. IEEE Trans. Energy Convers. 35(1), 454–461 (2020)

    Google Scholar 

  61. Pappalardo, C.M., Zhang, Z.G., Shabana, A.A.: Use of independent volume parameters in the development of new large displacement ANCF triangular plate/shell elements. Nonlinear Dyn. 91(4), 2171–2202 (2018)

    Google Scholar 

  62. Li, S.Z., Han, Y., Liu, C.Z.: Coupled multiphysics field analysis of high-current irregular-shaped busbar. IEEE Trans. Compon. Packag. Manuf. Technol. 9(9), 1805–1814 (2019)

    Google Scholar 

  63. Shi, Z., Sun, X.D., Lei, G., et al.: Analysis and optimization of radial force of permanent-magnet synchronous hub motors. IEEE Trans. Magn. 68, 1–4 (2020)

    Google Scholar 

  64. Fang, Y., Zhang, T.: Vibroacoustic characterization of a permanent magnet synchronous motor power train for electric vehicles. IEEE Trans. Energy Convers. 33(1), 272–280 (2018)

    Google Scholar 

  65. Chai, F., Li, Y., Pei, Y.L., et al.: Analysis of radial vibration caused by magnetic force and torque pulsation in interior permanent magnet synchronous motor considering Ai-Gap deformations. IEEE Trans. Ind. Electron. 66(9), 6703–6714 (2019)

    Google Scholar 

  66. Liu, J., Ye, W.B., Zang, Q.S., et al.: Deformation laminated and sandwich cylindrical shell with covered or embedded piezoelectric layers under compression and electrical loading. Compos. Struct. 240, 112041 (2020)

    Google Scholar 

  67. Yu, S.Y., Peng, M.J., Cheng, H., et al.: The improved element-free Galerkin method for three-dimensional elastoplasticity problems. Eng. Anal. Bound. Elem. 104, 215–224 (2019)

    MathSciNet  MATH  Google Scholar 

  68. Huang, Z.T., Lei, D., Han, Z., et al.: Boundary moving least squares method for 3D elasticity problems. Eng. Anal. Bound. Elem. 121, 255–266 (2021)

    MathSciNet  MATH  Google Scholar 

  69. Fahrendorf, F., Morganti, S., Reali, A., et al.: Mixed stress-displacement isogeometric collocation for nearly incompressible elasticity and elastoplasticity. Comput. Methods Appl. Mech. Eng. 369, 113112 (2020)

    MathSciNet  MATH  Google Scholar 

  70. Jung, Y.H., Park, M.R., Lim, M.S.: Asymmetric rotor design of IPMSM for vibration reduction under certain load condition. IEEE Trans. Energy Convers. 35(2), 928–937 (2020)

    Google Scholar 

  71. Lan, H., Zou, J.B., Xu, Y.X.: Effect of local tangential force on vibration performance in fractional-slot concentrated winding permanent magnet synchronous machines. IEEE Trans. Energy Convers. 34(2), 1082–1093 (2019)

    Google Scholar 

  72. Qin, X., Shen, Y.J., Chen, W., et al.: Bending and free vibration analyses of circular stiffened plates using the FSDT mesh-free method. Int. J. Mech. Sci. 202, 106498 (2021)

    Google Scholar 

  73. Li, X.L.: Three-dimensional complex variable element-free Galerkin method. Appl. Math. Model. 63, 148–171 (2018)

    MathSciNet  MATH  Google Scholar 

  74. Riker, C., Holze, S.M.: The mixed-cell-complex partition-of-unity method. Comput. Methods Appl. Mech. Eng. 198, 1235–1248 (2009). (SI)

    MathSciNet  MATH  Google Scholar 

  75. Wang, X.Y., Qi, H.B., Sun, Z.Y., et al.: A multiscale discrete-continuum mosaic method for nonlinear mechanical behaviors of periodic micro/nano-scale structures. Appl. Math. Model. 93, 376–394 (2021)

    MathSciNet  MATH  Google Scholar 

  76. Bourantas, G.C., Mountris, K.A., Loukopoulos, V.C., et al.: Strong-form approach to elasticity: hybrid finite difference-meshless collocation method (FDMCM). Appl. Math. Model. 57, 316–338 (2018)

    MathSciNet  MATH  Google Scholar 

  77. Aswathy, M., Arun, C.O.: An improved response function based stochastic meshless method for problems in elasto-statics. Comput. Methods Appl. Mech. Eng. 372, 113419 (2020)

    MathSciNet  MATH  Google Scholar 

  78. Jameel, A., Harmain, G.A.: Fatigue crack growth analysis of cracked specimens by the coupled finite element-element free Galerkin method. Mech. Adv. Mater. Struct. 26(16), 1343–1356 (2019)

    Google Scholar 

  79. Pathak, H., Singh, A., Singh, I.V., et al.: Three-dimensional stochastic quasi-static fatigue crack growth simulations using coupled FE-EFG approach. Comput. Struct. 160, 1–19 (2015)

    Google Scholar 

  80. Shojaei, A., Galvanetto, U., Rabczuk, T., et al.: A generalized finite difference method based on the peridynamic differential operator for the solution of problems in bounded and unbounded domains. Comput. Methods Appl. Mech. Eng. 343, 100–126 (2019)

    MathSciNet  MATH  Google Scholar 

  81. Yang, J.L., Zheng, J.L.: Approximate stability of moving least squares method. Acta Math. Appl. Sin. 35(4), 638–648 (2012)

    Google Scholar 

  82. Wang, S.M., Hong, J.F., Sun, Y.J., et al.: Filling force valley with interpoles for pole-frequency vibration reduction in surface-mounted PM synchronous machines. IEEE Trans. Ind. Electron. 67(8), 6709–6720 (2020)

    Google Scholar 

  83. Liu, X.B., Du, P.A., Qiao, X.Y., et al.: Study on effect of master DOF on errors of substructure static condensation modal analysis. China Mech. Eng. 22(3), 274–304 (2011)

    Google Scholar 

Download references

Acknowledgements

The work has been partially funded by “the Fundamental Research Funds for the Central Universities” (3216002101A2), the National “Double First-class” Construction Special Funds Project (4316002181) and Altair 2020 Young Talent Support Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Xu, W. Vibration analysis of permanent magnet synchronous motor using coupled finite element analysis and optimized meshless method. Nonlinear Dyn 108, 167–189 (2022). https://doi.org/10.1007/s11071-022-07238-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07238-4

Keyword

Navigation