Skip to main content
Log in

Some novel dynamical behaviours of localized solitary waves for the Hirota–Maccari system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates a particular family of semi-rational solutions in determinant form by using the KP hierarchy reduction method, which describe resonant collisions among lumps or resemble line rogue waves and dark solitons in the Hirota–Maccari system. Due to the resonant collisions, the line resemble rogue waves are generated and attenuated in the background of dark solitons with line profiles of finite length, and it takes a short time for the lumps to appear from and disappear into the dark solitons background. These solitary waves have the characteristics of two-dimensional spatial localization and one-dimensional temporal localization that can be utilized to model two-dimensional rogue waves in many physical settings, such as oceanic rogue waves. Our results further cover some striking dynamic features in nonlinear localized waves propagation model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this article are available from the corresponding author upon reasonable request.

References

  1. Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg-deVries equation. Phys. Rev. Lett. 19(19), 1095 (1967)

    Article  Google Scholar 

  2. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  3. Huang, L.: On the dynamics of localized excitation wave solutions to an extended (3+1)-dimensional Jimbo-Miwa equation. Appl. Math. Lett. 121, 107501 (2021)

    Article  MathSciNet  Google Scholar 

  4. Matveev, V.B., Salle, M.A.: Darboux Transformations and Solitons. Springer, Berlin (1991)

    Book  Google Scholar 

  5. Yue, Y., Huang, L., Chen, Y.: Modulation instability, rogue waves and spectral analysis for the sixth-order nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simulat. 89, 105284 (2020)

    Article  Google Scholar 

  6. Weiss, J.: Bäcklund transformations and the Painlevé property. J. Math. Phys. 27(5), 1293–1305 (1986)

    Article  MathSciNet  Google Scholar 

  7. Peng, W., Tian, S., Zhang, T., et al.: Rational and semi-rational solutions of a nonlocal (2+1)-dimensional nonlinear Schrödinger equation. Math. Method. Appl. Sci. 42(18), 6865–6877 (2019)

    Article  Google Scholar 

  8. Cao, Y., Malomed, B.A., He, J.: Two (2+1)-dimensional integrable nonlocal nonlinear Schrödinger equations: breather, rational and semi-rational solutions. Chaos Soliton. Fract. 114, 99–107 (2018)

    Article  Google Scholar 

  9. Fokas, A.S., Pelinovsky, D.E., Sulem, C.: Interaction of lumps with a line soliton for the DSII equation. Physica D 152, 189–198 (2002)

    MathSciNet  MATH  Google Scholar 

  10. Rao, J., Zhang, Y., Fokas, A.S., et al.: Rogue waves of the nonlocal Davey-Stewartson I equation. Nonlinearity 31(9), 4090 (2018)

    Article  MathSciNet  Google Scholar 

  11. Rao, J., Malomed, B.A., Cheng, Y., et al.: Dynamics of interaction between lumps and solitons in the Mel’nikov equation. Commun. Nonlinear Sci. Numer. Simul. 91, 105429 (2020)

    Article  MathSciNet  Google Scholar 

  12. Xu, Y., Mihalache, D., He, J.: Resonant collisions among two-dimensional localized waves in the Mel’nikov equation. Nonlinear Dyn. 106, 2431–2448 (2021)

    Article  Google Scholar 

  13. Chen, J., Chen, Y., Feng, B., et al.: Rational solutions to two-and one-dimensional multicomponent Yajima-Oikawa systems. Phys. Lett. A 379(24–25), 1510–1519 (2015)

    Article  MathSciNet  Google Scholar 

  14. Chen, J., Chen, Y., Feng, B., et al.: General mixed multi-soliton solutions to one-dimensional multicomponent Yajima-Oikawa system. J. Phys. Soc. Jpn. 84(7), 074001 (2015)

    Article  Google Scholar 

  15. Yuan, F., Cheng, Y., He, J.: Degeneration of breathers in the Kadomttsev-Petviashvili I equation. Commun. Nonlinear Sci. Numer. Simul. 83, 105027 (2020)

    Article  MathSciNet  Google Scholar 

  16. Yang, J., Ma, W.: Abundant interaction solutions of the KP equation. Nonlinear Dyn. 89(2), 1539–1544 (2017)

    Article  MathSciNet  Google Scholar 

  17. Kundu, A., Mukherjee, A., Naskar, T.: Modelling rogue waves through exact dynamical lump soliton controlled by ocean currents. P. Roy. Soc. A-Math. Phy. 470(2164), 20130576 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Estvéz, P.G., Díaz, E., Domínguez-Adame, F., et al.: Lump solitons in a higher-order nonlinear equation in 2+1 dimensions. Phys. Rev. E 93(6), 062219 (2016)

    Article  MathSciNet  Google Scholar 

  19. Rao, J., Cheng, Y., He, J.: Rational and semirational solutions of the nonlocal Davey-Stewartson equations. Stud. Appl. Math. 139(4), 568–598 (2017)

    Article  MathSciNet  Google Scholar 

  20. Maccari, A.: A generalized Hirota equation in 2+1 dimensions. J. Math. Phys. 39(12), 6547–6551 (1998)

    Article  MathSciNet  Google Scholar 

  21. Hirota, R.: Exact envelope-soliton solutions of a nonlinear wave equation. J. Math. Phys. 14(7), 805–809 (1973)

    Article  MathSciNet  Google Scholar 

  22. Wazwaz, A.M.: Abundant soliton and periodic wave solutions for the coupled Higgs field equation, the Maccari system and the Hirota–Maccari system. Phys. Scripta 85(6), 065011 (2012)

    Article  Google Scholar 

  23. Demiray, S.T., Pandir, Y., Bulut, H.: All exact travelling wave solutions of Hirota equation and Hirota–Maccari system. Optik 127(4), 1848–1859 (2016)

    Article  Google Scholar 

  24. Yu, X., Gao, Y., Sun, Z., et al.: N-soliton solutions for the (2+1)-dimensional Hirota–Maccari equation in fluids, plasmas and optical fibers. J. Math. Anal. Appl. 378(2), 519–527 (2011)

    Article  MathSciNet  Google Scholar 

  25. Wang, R., Zhang, Y., Chen, X., et al.: The rational and semi-rational solutions to the Hirota–Maccari system. Nonlinear Dyn. 100(3), 2767–2778 (2020)

    Article  Google Scholar 

  26. Rao, J., He, J., Mihalache, D.: Doubly localized rogue waves on a background of dark solitons for the Fokas system. Appl. Math. Lett. 121, 107435 (2021)

    Article  MathSciNet  Google Scholar 

  27. Rao, J., Fokas, A.S., He, J.: Doubly localized two-dimensional rogue waves in the Davey-Stewartson I equation. J. Nonlinear Sci. 31(4), 1–44 (2021)

    Article  MathSciNet  Google Scholar 

  28. Jiang, Y., Rao, J., Mihalache, D., et al.: Rogue breathers and rogue lumps on a background of dark line solitons for the Maccari system. Commun. Nonlinear Sci. Numer. Simul. 102, 105943 (2021)

    Article  MathSciNet  Google Scholar 

  29. Date, E., Jimbo, M., Kashiwara, M., et al.: Transformation groups for soliton equations-Euclidean Lie algebras and reduction of the KP hierarchy. Publ. Res. I. Math. Sci. 18(3), 1077–1110 (1982)

    Article  MathSciNet  Google Scholar 

  30. Sato, M.: Soliton equations as dynamical systems on infinite dimensional Grassmann manifold. North-Holland Math. Stud. 81, 259–271 (1983)

    Article  MathSciNet  Google Scholar 

  31. Ohta, Y., Yang, J.: General high-order rogue waves and their dynamics in the nonlinear Schrödinger equation. P. Roy. Soc. A-Math. Phy. 468(2142), 1716–1740 (2012)

    MATH  Google Scholar 

  32. Ohta, Y., Yang, J.: Rogue waves in the Davey-Stewartson I equation. Phys. Rev. E 86(3), 036604 (2012)

    Article  Google Scholar 

  33. Rao, J., Porsezian, K., He, J., et al.: Dynamics of lumps and dark-dark solitons in the multi-component long-wave-short-wave resonance interaction system. P. Roy. Soc. A-Math. Phy. 474(2209), 20170627 (2018)

    MathSciNet  MATH  Google Scholar 

  34. Zhang, X., Chen, Y., Tang, X.: Rogue wave and a pair of resonance stripe solitons to KP equation. Comput. Math. Appl. 76(8), 1938–1949 (2018)

    Article  MathSciNet  Google Scholar 

  35. Rao, J., Mihalache, D., Cheng, Y., et al.: Lump-soliton solutions to the Fokas system. Phys. Lett. A 383(11), 1138–1142 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable comments and constructive suggestion. This work is supported by the National Natural Science Foundation of China (No. 11371326 and No. 11975145).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, P., Zhang, Y., Zhang, H. et al. Some novel dynamical behaviours of localized solitary waves for the Hirota–Maccari system. Nonlinear Dyn 108, 533–541 (2022). https://doi.org/10.1007/s11071-022-07208-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07208-w

Keywords

Navigation