Skip to main content
Log in

Resonance Y-shape solitons and mixed solutions for a (2+1)-dimensional generalized Caudrey–Dodd–Gibbon–Kotera–Sawada equation in fluid mechanics

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Under the well-known bilinear method of Hirota, the specific expression for N-soliton solutions of (2+1)-dimensional generalized Caudrey–Dodd–Gibbon–Kotera–Sawada(gCDGKS) equation in fluid mechanics is given. By defining a novel restrictive condition on N-soliton solutions, resonant Y-type and X-type soliton solutions are generated. Under the new proposed constraint, combined with the velocity resonance method and module resonant method, the mixed solutions of resonant Y-type solitons and line waves and breather solutions are found. Finally, with the support of long-wave limit method, the interaction between resonant Y-type solitons and higher-order lumps is shown, and the motion trajectory equation before and after the interaction between lumps and resonant Y-type solitons is derived. These new results greatly extend the exact solution of (2+1)-dimensional gCDGKS equation already available in the literature and provide new ideas for studying the dynamical behaviors of fluid mechanic, soliton and shallow water wave and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated.

References

  1. Remoissenetm, M.: Solitons in nonlinear transmission lines. In: Waves called solitons, pp. 37–64. Springer, Berlin (1996)

    Chapter  Google Scholar 

  2. Zhang, R.-F., Li, M.-C., Gan, J.-Y., Li, Q., Lan, Z.-Z.: Novel trial functions and rogue waves of generalized breaking soliton equation via bilinear neural network method. Chaos, Solitons Fractals 154, 111692 (2022)

    Article  MathSciNet  Google Scholar 

  3. Zhang, R.-F., Li, M.-C., Yin, H.-M.: Rogue wave solutions and the bright and dark solitons of the (3+1)-dimensional jimbo-miwa equation. Nonlinear Dyn. 103(1), 1071–1079 (2021)

    Article  Google Scholar 

  4. Zhang, R.-F., Bilige, S., Liu, J.-G., Li, M.-C.: Bright-dark solitons and interaction phenomenon for p-gbkp equation by using bilinear neural network method. Phys. Scr. 96(2), 025224 (2020)

    Article  Google Scholar 

  5. Zhang, R.-F., Bilige, S., Chaolu, T.: Fractal solitons, arbitrary function solutions, exact periodic wave and breathers for a nonlinear partial differential equation by using bilinear neural network method. J. Syst. Sci. Complexity 34(1), 122–139 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  6. Zhang, R.-F., Bilige, S.: Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to p-gbkp equation. Nonlinear Dyn. 95(4), 3041–3048 (2019)

    Article  MATH  Google Scholar 

  7. Lou, S.-Y.: Soliton molecules and asymmetric solitons in three fifth order systems via velocity resonance. J. Phys. Commun. 4(4), 041002 (2020)

    Article  Google Scholar 

  8. Cheng, X.-P., Lou, S.-Y., Yang, Y.-Q., Li, P., Qi, S.-W.: The n-soliton molecule for the combined (2n+1) th-order lax’s kdv equation. Results Phys. 18, 103184 (2020)

    Article  Google Scholar 

  9. Ma, H.-C., Huang, H.-Y., Deng, A.-P.: Solitons and soliton molecules in two nonlocal alice-bob fifth-order kdv systems. Int. J. Theor. Phys. 60(8), 3051–3062 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ma, H.-C., Wang, Y.-X., Deng, A.-P.: Soliton molecules and asymmetric solitons of the extended lax equation via velocity resonance. Chinese Physics B, 31

  11. Ma, H.-C., Yue, S.-P., Deng, A.-P.: D’alembert wave, the hirota conditions and soliton molecule of a new generalized kdv equation. J. Geom. Phys. 172, 104413 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chow, K.W., Grimshaw, R.H.J., Ding, E.: Interactions of breathers and solitons in the extended korteweg-de vries equation. Wave Motion 43(2), 158–166 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Liu, W., Wazwaz, A.-M., Zheng, X.-X.: Families of semi-rational solutions to the kadomtsev-petviashvili i equation. Commun. Nonlinear Sci. Numer. Simul. 67, 480–491 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Satsuma, J., Ablowitz, M.J.: Two-dimensional lumps in nonlinear dispersive systems. J. Math. Phys. 20(7), 1496–1503 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhang, Y., Liu, Y.-P., Tang, X.-Y.: M-lump solutions to a (3+1)-dimensional nonlinear evolution equation. Comput. Math. Appl. 76(3), 592–601 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yan, Z.-W., Lou, S.-Y.: Special types of solitons and breather molecules for a (2+1)-dimensional fifth-order kdv equation. Commun. Nonlinear Sci. Numer. Simul. 91, 105425 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhang, Z., Yang, S.-X., Li, B.: Soliton molecules, asymmetric solitons and hybrid solutions for (2+1)-dimensional fifth-order kdv equation. Chin. Phys. Lett. 36(12), 120501 (2019)

    Article  Google Scholar 

  18. Ma, H.-C., Huang, H.-Y., Deng, A.-P.: Soliton molecules and some interaction solutions for the (3+1)-dimensional jimbo-miwa equation. J. Geom. Phys. 170, 104362 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ma, H.-C., Huang, H.-Y., Deng, A.-P.: Soliton molecules and some novel hybrid solutions for (3+1)-dimensional b-type kadomtsev-petviashvili equation. Mod. Phys. Lett. B 35(23), 2150388 (2021)

    Article  MathSciNet  Google Scholar 

  20. Ma, H.-C., Wang, Y.-X., Deng, A.-P.: Soliton molecules and some novel mixed solutions for the extended caudrey-dodd-gibbon equation. J. Geom. Phys. 168, 104309 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhao, Z.-L., He, L.-C.: M-lump, high-order breather solutions and interaction dynamics of a generalized (2+1)-dimensional nonlinear wave equation. Nonlinear Dyn. 100(3), 2753–2765 (2020)

    Article  Google Scholar 

  22. Wang, X., Wei, J., Wang, L., Zhang, J.-L.: Baseband modulation instability, rogue waves and state transitions in a deformed fokas-lenells equation. Nonlinear Dyn. 97(1), 343–353 (2019)

    Article  MATH  Google Scholar 

  23. Sakkaravarthi, K., Kanna, T., Vijayajayanthi, M., Lakshmanan, M.: Multicomponent long-wave-short-wave resonance interaction system: bright solitons, energy-sharing collisions, and resonant solitons. Phys. Rev. E 90(5), 052912 (2014)

    Article  MATH  Google Scholar 

  24. Liu, W., Zheng, X.-X., Wang, C., Li, S.-Q.: Fission and fusion collision of high-order lumps and solitons in a (3+1)-dimensional nonlinear evolution equation. Nonlinear Dyn. 96(4), 2463–2473 (2019)

    Article  MATH  Google Scholar 

  25. Yin, H.-M., Tian, B., Zhao, X.-C.: Chaotic breathers and breather fission/fusion for a vector nonlinear schrödinger equation in a birefringent optical fiber or wavelength division multiplexed system. Appl. Math. Comput. 368, 124768 (2020)

    MathSciNet  MATH  Google Scholar 

  26. Chen, A.-H.: Multi-kink solutions and soliton fission and fusion of sharma-tasso-olver equation. Phys. Lett. A 374(23), 2340–2345 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, Y.-F., Tian, B., Jiang, Y.: Soliton fusion and fission in a generalized variable-coefficient fifth-order korteweg-de vries equation in fluids. Appl. Math. Comput. 292, 448–456 (2017)

    MathSciNet  MATH  Google Scholar 

  28. Chen, A.-H., Wang, F.-F.: Fissionable wave solutions, lump solutions and interactional solutions for the (2+1)-dimensional sawada-kotera equation. Phys. Scr. 94(5), 055206 (2019)

    Article  Google Scholar 

  29. Kuo, C.-K., Ma, W.-X.: A study on resonant multi-soliton solutions to the (2+1)-dimensional hirota-satsuma-ito equations via the linear superposition principle. Nonlinear Anal. 190, 111592 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, J.-H., Chen, Q.-Q., Li, B.: Resonance y-type soliton solutions and some new types of hybrid solutions in the (2+1)-dimensional sawada-kotera equation. Commun. Theor. Phys. 73(4), 045006 (2021)

    Article  MathSciNet  Google Scholar 

  31. Wang, M.-M., Qi, Z.-Q., Chen, J.-C., Li, B.: Resonance y-shaped soliton and interaction solutions in the (2+1)-dimensional b-type kadomtsev-petviashvili equation. Int. J. Mod. Phys. B 35(21), 2150222 (2021)

    Article  MathSciNet  Google Scholar 

  32. Yang, S.-X., Zhang, Z., Li, B.: Y-shaped soliton solutions for the (2+1)-dimensional bidirectional sawada-kotera equation. Mod. Phys. Lett. B 35(33), 2150488 (2021)

    Article  MathSciNet  Google Scholar 

  33. Zhang, Z., Qi, Z.-Q., Li, B.: Fusion and fission phenomena for (2+ 1)-dimensional fifth-order kdv system. Appl. Math. Lett. 116, 107004 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  34. Anwar, S., Sheltami, T., Shakshuki, E., Khamis, M.: A framework for single and multiple anomalies localization in pipelines. J. Ambient. Intell. Humaniz. Comput. 10(7), 2563–2575 (2019)

    Article  Google Scholar 

  35. Gupta, V., Mittal, M.: Qrs complex detection using stft, chaos analysis, and pca in standard and real-time ecg databases. J. Inst. Eng. (India): Ser. B 100(5), 489–497 (2019)

    Google Scholar 

  36. Li, T.-Y., Song, Y.-H., Xia, X.-T.: Research on remote control algorithm for parallel implicit domain robot patrol inspection on 3d unstructured grid. J. Ambient. Intell. Humaniz. Comput. 11(12), 6337–6347 (2020)

    Article  Google Scholar 

  37. An, X.-F., Wang,Y.-F.: Smart wearable medical devices for isometric contraction of muscles and joint tracking with gyro sensors for elderly people. Journal of Ambient Intelligence and Humanized Computing, 1–12 (2021)

  38. Kim, H., Han, J., Han, S.: Analysis of evacuation simulation considering crowd density and the effect of a fallen person. J. Ambient. Intell. Humaniz. Comput. 10(12), 4869–4879 (2019)

    Article  Google Scholar 

  39. Xiong, Z.-G., Deng, K., Liu, Z.-S., Liu, Y.-P., Yan, X.-C.: The finite volume element method for a parameter identification problem. J. Ambient. Intell. Humaniz. Comput. 6(5), 533–539 (2015)

    Article  Google Scholar 

  40. Ning, T., Jin, H., Song, X.-D., Li, B.: An improved quantum genetic algorithm based on magtd for dynamic fjsp. J. Ambient. Intell. Humaniz. Comput. 9(4), 931–940 (2018)

    Article  Google Scholar 

  41. Gupta, V., Mittal, M., Mittal, V.: R-peak detection based chaos analysis of ecg signal. Analog Integr. Circ. Sig. Process 102(3), 479–490 (2019)

    Article  Google Scholar 

  42. Gupta, V., Mittal, M.: A novel method of cardiac arrhythmia detection in electrocardiogram signal. Int. J. Med. Eng. Informatics 12(5), 489–499 (2020)

    Article  Google Scholar 

  43. Gupta, V., Mittal, M., Mittal, V.: R-peak detection using chaos analysis in standard and real time ecg databases. IRBM 40(6), 341–354 (2019)

    Article  Google Scholar 

  44. Gupta, V., Mittal, M., Mittal, V.: Chaos theory: an emerging tool for arrhythmia detection. Sens. Imaging 21(1), 1–22 (2020)

    Article  Google Scholar 

  45. Gupta, V., Mittal, M.: R-peak detection for improved analysis in health informatics. Int. J. Med. Eng. Informatics 13(3), 213–223 (2021)

    Article  Google Scholar 

  46. Gupta, V., Mittal, M., Mittal, V.: Chaos theory and artfa: Emerging tools for interpreting ecg signals to diagnose cardiac arrhythmias. Wireless Pers. Commun. 118(4), 3615–3646 (2021)

    Article  Google Scholar 

  47. Gupta, V., Mittal, M., Mittal, V., Saxena, N.K.: A critical review of feature extraction techniques for ecg signal analysis. J. Inst. Eng. (India): Ser. B 102(5), 1049–1060 (2021)

    Google Scholar 

  48. Radha, B., Duraisamy, C.: The homogeneous balance method and its applications for finding the exact solutions for nonlinear equations. J. Ambient. Intell. Humaniz. Comput. 12(6), 6591–6597 (2020)

    Article  Google Scholar 

  49. Peng, W.-Q., Tian, S.-F., Zou, L., Zhang, T.-T.: Characteristics of the solitary waves and lump waves with interaction phenomena in a (2+1)-dimensional generalized caudrey-dodd-gibbon-kotera-sawada equation. Nonlinear Dyn. 93(4), 1841–1851 (2018)

    Article  MATH  Google Scholar 

  50. Deng, G.-F., Gao, Y.-T., Jing-Jing, S., Ding, C.-C., Jia, T.-T.: Solitons and periodic waves for the (2+ 1)-dimensional generalized caudrey-dodd-gibbon-kotera-sawada equation in fluid mechanics. Nonlinear Dyn. 99(2), 1039–1052 (2020)

    Article  MATH  Google Scholar 

  51. Konopelchenko, B.G., Dubrovsky, V.G.: Some new integrable nonlinear evolution equations in 2+1 dimensions. Phys. Lett. A 102(1–2), 15–17 (1984)

    Article  MathSciNet  Google Scholar 

  52. Cao, C.-W., Yong-Tang, W., Geng, X.-G.: On quasi-periodic solutions of the 2+1 dimensional caudrey-dodd-gibbon-kotera-sawada equation. Phys. Lett. A 256(1), 59–65 (1999)

    Article  Google Scholar 

  53. Zhuang, J.-H., Liu, Y.-Q., Chen, X., Juan-Juan, W., Wen, X.-Y.: Diverse solitons and interaction solutions for the (2+1)-dimensional cdgks equation. Mod. Phys. Lett. B 33(16), 1950174 (2019)

    Article  MathSciNet  Google Scholar 

  54. Zhang, R.-F., Li, M.-C., Albishari, M., Zheng, F.-C., Lan, Z.-Z.: Generalized lump solutions, classical lump solutions and rogue waves of the (2+1)-dimensional caudrey-dodd-gibbon-kotera-sawada-like equation. Appl. Math. Comput. 403, 126201 (2021)

    MathSciNet  MATH  Google Scholar 

  55. Wang, X., Chen, Y.: Darboux transformations and n-soliton solutions of two (2+1)-dimensional nonlinear equations. Commun. Theor. Phys. 61(4), 423–430 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  56. Sawada, K., Kotera, T.: A method for finding n-soliton solutions of the kdv equation and kdv-like equation. Progress Theoret. Phys. 51(5), 1355–1367 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  57. Liu, C.-F., Dai, Z.-D.: Exact soliton solutions for the fifth-order sawada-kotera equation. Appl. Math. Comput. 206(1), 272–275 (2008)

    MathSciNet  MATH  Google Scholar 

  58. Guo, Y.-F., Li, D.-L., Wang, J.-X.: The new exact solutions of the fifth-order sawada-kotera equation using three wave method. Appl. Math. Lett. 94, 232–237 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  59. Naher, H., Abdullah, F.A., Mohyud-Din, S.T.: Extended generalized riccati equation mapping method for the fifth-order sawada-kotera equation. AIP Adv. 3(5), 052104 (2013)

    Article  Google Scholar 

  60. Gupta, A.K., Ray, S.S.: Numerical treatment for the solution of fractional fifth-order sawada-kotera equation using second kind chebyshev wavelet method. Appl. Math. Model. 39(17), 5121–5130 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  61. Hirota, R., Satsuma, J.: Soliton solutions of a coupled korteweg-de vries equation. Phys. Lett. A 85(8–9), 407–408 (1981)

    Article  MathSciNet  Google Scholar 

  62. Zhang, Z., Yang, X.-Y., Li, W.-T., Li, B.: Trajectory equation of a lump before and after collision with line, lump, and breather waves for (2+1)-dimensional kadomtsev-petviashvili equation. Chin. Phys. B 28(11), 110201 (2019)

    Article  Google Scholar 

  63. Wang, X., Wei, J., Geng, X.-G.: Rational solutions for a (3+1)-dimensional nonlinear evolution equation. Commun. Nonlinear Sci. Numer. Simul. 83, 105116 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  64. Wang, X., Wei, J.: Antidark solitons and soliton molecules in a (3+1)-dimensional nonlinear evolution equation. Nonlinear Dyn. 102(1), 363–377 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The work is supported by the National Natural Science Foundation of China (project No. 11371086, 11671258, 11975145), the Fund of Science and Technology Commission of Shanghai Municipality (project No. 13ZR1400100), the Fund of Donghua University, institute for nonlinear sciences and the Fundamental Research Funds for the Central Universities with contract number 2232021G-13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongcai Ma.

Ethics declarations

Conflict of interest

There are no conflicts of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, H., Yue, S. & Deng, A. Resonance Y-shape solitons and mixed solutions for a (2+1)-dimensional generalized Caudrey–Dodd–Gibbon–Kotera–Sawada equation in fluid mechanics. Nonlinear Dyn 108, 505–519 (2022). https://doi.org/10.1007/s11071-022-07205-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07205-z

Keywords

Navigation