Skip to main content
Log in

SMC for phase-type stochastic nonlinear semi-Markov jump systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper concerns the issue of sliding mode control (SMC) for phase-type stochastic nonlinear semi-Markov jump systems (S-MJSs) via the T-S fuzzy strategy. One unrealistic assumption, that is, the sojourn time in stochastic switching systems follows an exponential distribution, is removed in this paper by S-MJSs model, which is one of the main features compared to the existing literatures. First, by using the plant transformation method and the supplementary variable technique, phase-type S-MJSs are equivalent to associated Markov jump systems (MJSs). Then, an integral sliding surface function is established to cope with the influence of the switching phenomenon in the plant. By using Lyapunov functions and inequality optimization problems, sufficient conditions are provided for stochastic stability of the system with a prescribed \(H_\infty \) performance index. In addition, a fuzzy SMC law is synthesized to guarantee that the associated T-S fuzzy MJSs fulfill the reaching condition in bounded time. Finally, the validity of the conclusions is verified by the single-link robot arm model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Dong, G.W., Li, H.Y., Ma, H., Lu, R.Q.: Finite-time consensus tracking neural network FTC of multi-agent systems. IEEE Trans. Neural Netw. Learn. Syst. 32(2), 653–662 (2020)

    MathSciNet  Google Scholar 

  2. Li, H.Y., Wu, Y., Chen, M.: Adaptive fault-tolerant tracking control for discrete-time multi-agent systems via reinforcement learning algorithm. IEEE Trans. Cybern. 51(3), 1–12 (2020)

    Google Scholar 

  3. Lin, G.H., Li, H.Y., Ma, H., Yao, D.Y., Lu, R.Q.: Human-in-the-loop consensus control for nonlinear multi-agent systems with actuator faults. IEEE CAA J. Autom. Sinica (2020). https://doi.org/10.1109/JAS.2020.1003596

    Article  Google Scholar 

  4. Dong, S.L., Wu, Z.G., Su, H.Y., Shi, P., Karimi, H.R.: Asynchronous control of continuous-time nonlinear Markov jump systems subject to strict dissipativity. IEEE Trans. Autom. Control 64(3), 1250–1256 (2019)

    MathSciNet  MATH  Google Scholar 

  5. Yao, D.Y., Lu, R.Q., Ren, H.R., Zhou, Q.: Sliding mode control for state-delayed Markov jump systems with partly unknown transition probabilities. Nonlinear Dyn. 91(1), 475–486 (2018)

    MathSciNet  MATH  Google Scholar 

  6. Yu, P., Ma, Y.C.: Observer-based asynchronous control for Markov jump systems. Appl. Math. Comput. 377, 125184 (2020)

    MathSciNet  MATH  Google Scholar 

  7. Zhao, Y.H., Ma, Y.C.: Asynchronous \(H_{\infty }\) control for hidden singular Markov jump systems with incomplete transition probabilities via state decomposition approach. Appl. Math. Comput. 407, 126304 (2021)

    MATH  Google Scholar 

  8. Boukas, E.K.: Stochastic switching systems: Analysis and design. Birkh\(\ddot{a}\)user: Boston (2006)

  9. Wu, H.N., Cai, K.Y.: Mode-independent robust stabilization for uncertain Markovian jump nonlinear systems via fuzzy control. IEEE Trans. Syst. Man. Cybern. B Cybern. 36(3), 509–519 (2005)

    MathSciNet  Google Scholar 

  10. Zong, G.D., Li, Y.K., Sun, H.B.: Composite anti-disturbance resilient control for Markovian jump nonlinear systems with general uncertain transition rate. Sci. China Inform. Sci. 62(2), 022205 (2019)

    MathSciNet  Google Scholar 

  11. Hou, Z.T., Luo, J.W., Shi, P., Nguang, S.K.: Stochastic stability of It\(\hat{o}\) differential equations with semi-Markovian jump parameters. IEEE Trans. Autom. Control 51(8), 1383–1387 (2006)

    MATH  Google Scholar 

  12. Li, M., Chen, Y., Xu, L.Y., Chen, Z.Y.: Asynchronous control strategy for semi-Markov switched system and its application. Inform. Sci. 532, 125–138 (2020)

    MathSciNet  MATH  Google Scholar 

  13. Ning, Z.P., Zhang, L.X., Colaneri, P.: Semi-Markov jump linear systems with incomplete sojourn and transition information: Analysis and synthesis. IEEE Trans. Autom. Control 65(1), 159–174 (2020)

    MathSciNet  MATH  Google Scholar 

  14. Tian, Y.X., Yan, H.C., Zhang, H., Zhan, X.S., Peng, Y.: Dynamic output-feedback control of linear semi-Markov jump systems with incomplete semi-Markov kernel. Automatica 117, 108997 (2020)

    MathSciNet  MATH  Google Scholar 

  15. Wang, B., Zhu, Q.X.: Stability analysis of semi-Markov switched stochastic systems. Automatica 94(94), 72–80 (2018)

    MathSciNet  MATH  Google Scholar 

  16. Zhang, L.X., Cai, B., Shi, Y.: Stabilization of hidden semi-Markov jump systems: emission probability approach. Automatica 101, 87–95 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Jiang, B.P., Karimi, H.R., Kao, Y.G., Gao, C.C.: Takagi-Sugeno model based event-triggered fuzzy sliding mode control of networked control systems with semi-Markovian switchings. IEEE Trans. Fuzzy Syst. 28(4), 673–683 (2020)

    Google Scholar 

  18. Qi, W.H., Zong, G.D., Karimi, H.R.: SMC for nonlinear stochastic switching systems with quantization. IEEE Trans. Circuits Syst. II Express Briefs (2020). https://doi.org/10.1109/TCSII.2020.3047785

    Article  Google Scholar 

  19. Qi, W.H., Zong, G.D., Zheng, W.X.: Adaptive event-triggered SMC for stochastic switching systems with semi-Markov process and application to boost converter circuit model. IEEE Trans. Circuits Syst. I Reg. Papers 68(2), 786–796 (2021)

    MathSciNet  Google Scholar 

  20. Wang, J., Chen, M.S., Shen, H.: Event-triggered dissipative filtering for networked semi-Markov jump systems and its applications in a mass-spring system model. Nonlinear Dyn. 87(4), 2741–2753 (2017)

    MathSciNet  MATH  Google Scholar 

  21. Shen, H., Men, Y.Z., Wu, Z.G., Cao, J.D., Lu, G.P.: Network-based quantized control for fuzzy singularly perturbed semi-Markov jump systems and its application. IEEE Trans. Circuits Syst. I Reg. Papers 66(3), 1130–1140 (2019)

    Google Scholar 

  22. Dong, S.L., Chen, G.R., Liu, M.Q., Wu, Z.G.: Robust adaptive \(H_{\infty }\) control for networked uncertain semi-Markov jump nonlinear systems with input quantization. Sci. China Inform. Sci. 65, 189201 (2022)

    Google Scholar 

  23. Neuts, M.F.: Probability distributions of phase type. University of Louvain, Belgium (1975)

    Google Scholar 

  24. Heffes, H., Lucantoni, D.: A Markov modulated characterization of packetized voice and data traffic and related statistical multiplexer performance. IEEE J. Sel. Area. Comm. 4(6), 856–868 (1986)

    Google Scholar 

  25. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man. Cybern. SMC–15(1), 116–132 (1985)

    MATH  Google Scholar 

  26. Yao, Y.G., Tan, J.Q., Wu, J., Zhang, X.: Event-triggered fixed-time adaptive fuzzy control for state-constrained stochastic nonlinear systems without feasibility conditions. Nonlinear Dyn. 105(1), 403–416 (2021)

    Google Scholar 

  27. Mu, Y.F., Zhang, H.G., Su, H.G., Ren, H.: Unknown input observer synthesis for discrete-time T-S fuzzy singular systems with application to actuator fault estimation. Nonlinear Dyn. 100(4), 3399–3412 (2020)

    Google Scholar 

  28. Chen, L.H., Zhu, Y.Z., Ahn, C.K.: Novel quantized fuzzy adaptive design for nonlinear systems with sliding mode technique. Nonlinear Dyn. 96(2), 1635–1648 (2019)

    Google Scholar 

  29. Zhang, X.F., Huang, W.K.: Robust \(H_{\infty }\) adaptive output feedback sliding mode control for interval type-2 fuzzy fractional-order systems with actuator faults. Nonlinear Dyn. 104(1), 537–550 (2021)

    Google Scholar 

  30. Ma, Y.C., Kong, C.F.: Dissipative asynchronous T-S fuzzy control for singular semi-Markovian jump systems. IEEE Trans. Cybern. (2020). https://doi.org/10.1109/TCYB.2020.3032398

    Article  Google Scholar 

  31. Zhang, M., Shi, P., Ma, L.H., Cai, J.P., Su, H.Y.: Quantized feedback control of fuzzy Markov jump systems. IEEE Trans. Cybern. 49(9), 3375–3384 (2019)

    Google Scholar 

  32. Wang, Y.Y., Ahn, C.K., Yan, H.C., Xie, S.R.: Fuzzy control and filtering for nonlinear singularly perturbed Markov jump systems. IEEE Trans. Cybern. (2020). https://doi.org/10.1109/TCYB.2020.3004226

    Article  Google Scholar 

  33. Yang, H.Y., Jiang, Y.C., Yin, S.: Adaptive fuzzy fault tolerant control for Markov jump systems with additive and multiplicative actuator faults. IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/TFUZZ.2020.2965884

    Article  Google Scholar 

  34. Chern, T.L., Wu, Y.C.: Design of integral variable structure controller and application to electrohydraulic velocity servosystems. IEE Proc. D 138(5), 439–444 (1991)

    Google Scholar 

  35. Tao, R.F., Ma, Y.C., Wang, C.J.: Stochastic admissibility of singular Markov jump systems with time-delay via sliding mode approach. Appl. Math. Comput. 380, 125282 (2020)

    MathSciNet  MATH  Google Scholar 

  36. Nguyen, S.D., Lam, B.D., Ngo, V.H.: Fractional-order sliding-mode controller for semi-active vehicle MRD suspensions. Nonlinear Dyn. 101(2), 795–821 (2020)

    Google Scholar 

  37. Ma, M.C., Zhao, K., Song, S.M.: Adaptive sliding mode guidance law with prescribed performance for intercepting maneuvering target. Int. J. Innov. Comput. Inform. Control 16(2), 631–648 (2020)

    Google Scholar 

  38. Khan, W.U., Kara, T.: Adaptive type-2 neural fuzzy sliding mode control of a class of nonlinear systems. Nonlinear Dyn. 101(4), 2283–2297 (2020)

    Google Scholar 

  39. Li, M., Chen, Y.: Robust adaptive sliding mode control for switched networked control systems with disturbance and faults. IEEE Trans. Ind. Inform. 15(1), 193–204 (2019)

    Google Scholar 

  40. Wei, Z.Q., Ma, Y.C.: Robust \(H_{\infty }\) observer-based sliding mode control for uncertain Takagi-Sugeno fuzzy descriptor systems with unmeasurable premise variables and time-varying delay. Inform. Sci. 566, 239–261 (2021)

    MathSciNet  Google Scholar 

  41. Liu, Z., Yu, J.P., Zhao, L., Ma, Y.M., Xue, B.Q., Cheng, S.: Adaptive \(H_{\infty }\) sliding mode control for a class of uncertain Markovian jump systems with time-delay. ICIC Exp. Lett. 14(4), 319–327 (2020)

    Google Scholar 

  42. Shi, P., Xia, Y.Q., Liu, G.P., Rees, D.: On designing of sliding-mode control for stochastic jump systems. IEEE Trans. Autom. Control 51(1), 97–103 (2006)

    MathSciNet  MATH  Google Scholar 

  43. Zhu, Q., Yu, X.H., Song, A.G., Fei, S.M., Cao, Z.Q., Yang, Y.Q.: On sliding mode control of single input Markovian jump systems. Automatica 50(11), 2897–2904 (2014)

    MathSciNet  MATH  Google Scholar 

  44. Wei, Y.L., Park, J.H., Qiu, J.B., Wu, L.G., Jung, H.Y.: Sliding mode control for semi-Markovian jump systems via output feedback. Automatica. 81, 133–141 (2017)

    MathSciNet  MATH  Google Scholar 

  45. Zhang, J.Y., Zhang, Q.L., Wang, Y.Y.: A new design of sliding mode control for Markovian jump systems based on stochastic sliding surface. Inform. Sci. 391, 9–27 (2017)

    MATH  Google Scholar 

  46. Zhang, Q.L., Zhang, J.Y., Wang, Y.Y.: Sliding-mode control for singular Markovian jump systems with Brownian motion based on stochastic sliding mode surface. IEEE Trans. Syst. Man Cybern. Syst. 49(3), 494–505 (2019)

  47. Du, C.L., Li, F.B., Yang, C.H.: An improved homogeneous polynomial approach for adaptive sliding-mode control of Markov jump systems with actuator faults. IEEE Trans. Autom. Control 65(3), 955–969 (2020)

    MathSciNet  MATH  Google Scholar 

  48. Lin, W.S., Zhang, B., Yao, D.Y., Li, H.Y., Lu, R.Q.: Adaptive neural sliding mode control of Markov jump systems subject to malicious attacks. IEEE Trans. Syst. Man Cybern. Syst. (2020). https://doi.org/10.1109/TSMC.2020.2989345

    Article  Google Scholar 

  49. Wang, J., Yang, C.Y., Shen, H., Cao, J.D., Rutkowski, L.: Sliding-mode control for slow-sampling singularly perturbed systems subject to Markov jump parameters. IEEE Trans. Syst. Man Cybern. Syst. (2020). https://doi.org/10.1109/TSMC.2020.2979860

    Article  Google Scholar 

  50. Dong, S.L., Xie, K., Chen, G.R., Liu, M.Q., Wu, Z.G.: Extended dissipative sliding-mode control for discrete-time piecewise nonhomogeneous Markov jump nonlinear systems. IEEE Trans. Cybern. (2021). https://doi.org/10.1109/TCYB.2021.3052647

    Article  Google Scholar 

  51. Mao, X.R.: Stability of stochastic differential equations with Markovian switching. Stoch. Pro. Appl. 79(1), 45–67 (1999)

    MathSciNet  MATH  Google Scholar 

  52. Niu, Y.G., Ho, D.W.C., Wang, X.Y.: Sliding mode control for It\(\hat{o}\) stochastic systems with Markovian switching. Automatica 43(10), 1784–1790 (2007)

    MathSciNet  MATH  Google Scholar 

  53. Sheng, L., Gao, M., Zhang, W.H.: Dissipative control for Markov jump non-linear stochastic systems based on TCS fuzzy model. Int. Syst. Sci. 45(5), 1213–1224 (2014)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China under Grant 62073188, Grant 61773235, Grant 61773236, and Grant 61873331, and Natural Science Foundation of Shandong under Grant ZR2019YQ29.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhai Qi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, M., Qi, W., Cao, J. et al. SMC for phase-type stochastic nonlinear semi-Markov jump systems. Nonlinear Dyn 108, 279–292 (2022). https://doi.org/10.1007/s11071-022-07200-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07200-4

Keywords

Navigation