Skip to main content

Multi-elliptic rogue wave clusters of the nonlinear Schrödinger equation on different backgrounds

Abstract

In this work, we analyze the multi-elliptic rogue wave clusters of the nonlinear Schrödinger equation (NLSE) in order to understand more thoroughly the origin and appearance of optical rogue waves in this system. Such structures are obtained on uniform backgrounds by using the Darboux transformation scheme for finding analytical solutions of the NLSE under various conditions. In particular, we solve the eigenvalue problem of the Lax pair of order n in which the first m evolution shifts are equal, nonzero, and eigenvalue dependent, while the imaginary parts of all eigenvalues tend to one. We show that an Akhmediev breather of order \(n-2m\) appears at the origin of the (xt) plane and can be considered as the central rogue wave of the so-formed cluster. We show that the high-intensity narrow peak, with the characteristic intensity distribution in its vicinity, is enclosed by m ellipses consisting of the first-order Akhmediev breathers. The number of maxima on each ellipse is determined by its index and the solution order. Since rogue waves in nature usually appear on a wavy background, we utilize the modified Darboux transformation scheme to build such solutions on a Jacobi elliptic dnoidal background. We analyze the vertical semi-axis of all ellipses in a cluster as a function of an absolute evolution shift. We show that the cluster radial symmetry in the (xt) plane is broken when the shift value is increased above a threshold. We apply the same analysis on the Hirota equation, to examine the influence of a real parameter and Hirota’s operator on the cluster appearance. The same analysis can be applied to the infinite hierarchy of extended NLSEs. The main outcomes of this paper are the new multi-rogue wave solutions of the nonlinear Schrödinger equation and its extended family on uniform and elliptic backgrounds.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Data availability

All data generated or analyzed during this study are included in the published article.

References

  1. Fibich, G.: The Nonlinear Schrödinger Equation. Springer, Berlin (2015)

    MATH  Google Scholar 

  2. Mirzazadeh, M., Eslami, M., Zerrad, E., Mahmood, M.F., Biswas, A., Belić, M.: Optical solitons in nonlinear directional couplers by sine-cosine function method and Bernoulli‘s equation approach. Nonlinear Dyn. 81, 1933–1949 (2015)

    MathSciNet  MATH  Google Scholar 

  3. Khalique, C.M.: Stationary solutions for nonlinear dispersive Schrödinger equation. Nonlinear Dyn. 63, 623–626 (2011)

    Google Scholar 

  4. Agrawal, G.P.: Applications of nonlinear fiber optics. Academic Press, San Diego (2001)

  5. Kivshar, Y.S., Agrawal, G.P.: Optical Solitons. Academic Press, San Diego (2003)

    Google Scholar 

  6. Dudley, J.M., Dias, F., Erkintalo, M., Genty, G.: Instabilities, breathers and rogue waves in optics. Nature Phot. 8, 755 (2014)

    Google Scholar 

  7. Dudley, J.M., Taylor, J.M.: Supercontinuum Generation in Optical Fibers. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  8. Kibler, B., Fatome, J., Finot, C., Millot, G., Dias, F., Genty, G., Akhmediev, N., Dudley, J.M.: Observation of Kuznetsov-Ma soliton dynamics in optical fibre. Sci. Rep. 6, 463 (2012)

    Google Scholar 

  9. Bao, W.: The nonlinear Schrödinger equation and applications in Bose-Einstein condensation and plasma physics. In: Lecture Note Series, IMS, NUS, vol. 9 (2007)

  10. Busch, T., Anglin, J.R.: Dark-bright solitons in inhomogeneous Bose-Einstein condensates. Phys. Rev. Lett. 87, 010401 (2001)

    Google Scholar 

  11. Zakharov, V.E.: Stability of periodic waves of finite amplitude on a surface of deep fluid. J. Appl. Mech. Tech. Phys. 9, (1968)

  12. Osborne, A.: Nonlinear ocean waves and the inverse scattering transform. Academic Press, Cambridge (2010)

    MATH  Google Scholar 

  13. Shukla, P.K., Eliasson, B.: Nonlinear aspects of quantum plasma physics. Phys. Usp. 53, 51 (2010)

    Google Scholar 

  14. Ankiewicz, A., Kedziora, D.J., Chowdury, A., Bandelow, U., Akhmediev, N.: Infinite hierarchy of nonlinear Schrödinger equations and their solutions. Phys. Rev. E 93, 012206 (2016)

    MathSciNet  Google Scholar 

  15. Kedziora, D.J., Ankiewicz, A., Chowdury, A., Akhmediev, N.: Integrable equations of the infinite nonlinear Schrödinger equation hierarchy with time variable coefficients. Chaos 25, 103114 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Mani Rajan, M.S., Mahalingam, A.: Nonautonomous solitons in modified inhomogeneous Hirota equation: soliton control and soliton interaction. Nonlinear Dyn. 79, 2469–2484 (2015)

    MathSciNet  Google Scholar 

  17. Wang, D.-S., Chen, F., Wen, X.-Y.: Darboux transformation of the general Hirota equation: multisoliton solutions, breather solutions and rogue wave solutions. Adv. Differ. Equ. 2016, 67 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Ankiewicz, A., Soto-Crespo, J.M., Akhmediev, N.: Rogue waves and rational solutions of the Hirota equation. Phys. Rev. E 81, 046602 (2010)

    MathSciNet  Google Scholar 

  19. Nikolić, S.N., Aleksić, N.B., Ashour, O.A., Belić, M.R., Chin, S.A.: Systematic generation of higher-order solitons and breathers of the Hirota equation on different backgrounds. Nonlinear Dyn. 89, 1637–1649 (2017)

    MathSciNet  Google Scholar 

  20. Chowdury, A., Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Breather solutions of the integrable nonlinear Schrödinger equation and their interactions. Phys. Rev. E 91, 022919 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Yang, Y., Yan, Z., Malomed, B.A.: Rogue waves, rational solitons, and modulational instability in an integrable fifth-order nonlinear Schrödinger equation. Chaos 25, 103112 (2015)

  22. Nikolić, S.N., Aleksić, N.B., Ashour, O.A., Belić, M.R., Chin, S.A.: Breathers, solitons and rogue waves of the quintic nonlinear Schrödinger equation on various backgrounds. Nonlinear Dyn. 95, 2855–2865 (2019)

    MATH  Google Scholar 

  23. Nikolić, S.N., Ashour, O.A., Aleksić, N.B., Zhang, Y., Belić, M.R., Chin, S.A.: Talbot carpets by rogue waves of extended nonlinear Schrödinger equations. Nonlinear Dyn. 97, 1215 (2019)

    MATH  Google Scholar 

  24. Akhmediev, N.N., Korneev, V.I.: Modulation instability and periodic solutions of the nonlinear Schrödinger equation. Theor. Math. Phys. 69, 1089 (1986)

    MATH  Google Scholar 

  25. Akhmediev, N., Eleonskii, V., Kulagin, N.: Exact first-order solutions of the nonlinear Schrödinger equation. Theor. Math. Phys. 72, 809 (1987)

    MATH  Google Scholar 

  26. Zakharov, V.E., Shabat, A.B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. J. Exp. Theor. Phys. 34, 62 (1972)

    MathSciNet  Google Scholar 

  27. Matveev, V.B., Salle, M.A.: Darboux Transformations and Solitons. Springer, Berlin-Heidelberg (1991)

    MATH  Google Scholar 

  28. Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Circular rogue wave clusters. Phys. Rev. E 84, 056611 (2011)

    MATH  Google Scholar 

  29. Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Rogue waves and solitons on a cnoidal background. Eur. Phys. J. Special Topics 223, 43–62 (2014)

    Google Scholar 

  30. Chin, S.A., Ashour, O.A., Nikolić, S.N., Belić, M.R.: Peak-height formula for higher-order breathers of the nonlinear Schrödinger equation on nonuniform backgrounds. Phys. Rev. E 95, 012211 (2017)

    MathSciNet  Google Scholar 

  31. Peregrine, D.H.: Water waves, nonlinear Schrödinger equations and their solutions. J. Austral. Math. Soc. B 25, 16 (1983)

    MathSciNet  MATH  Google Scholar 

  32. Garrett, C., Gemmrich, J.: Rogue waves. Phys. Today. 62, 62 (2009)

    Google Scholar 

  33. Solli, D.R., Ropers, C., Jalali, B.: Active Control of Rogue Waves for Stimulated Supercontinuum Generation. Phys. Rev. Lett. 101, 233902 (2008)

    Google Scholar 

  34. Dudley, J.M., Genty, G., Eggleton, B.J.: Harnessing and control of optical rogue waves in supercontinuum generation. Opt. Express 16, 3644 (2008)

    Google Scholar 

  35. Ganshin, A.N., Efimov, V.B., Kolmakov, G.V., Mezhov-Deglin, L.P., McClintock, P.V.E.: Observation of an Inverse Energy Cascade in Developed Acoustic Turbulence in Superfluid Helium. Phys. Rev. Lett. 101, 065303 (2008)

    Google Scholar 

  36. Bludov, Y.V., Konotop, V.V., Akhmediev, N.: Matter rogue waves. Phys. Rev. A 80, 033610 (2009)

    Google Scholar 

  37. Akhmediev, N., et al.: Roadmap on optical rogue waves and extreme events. J. Opt. 18, 063001 (2016)

    Google Scholar 

  38. Chin, S.A., Ashour, O.A., Belić, M.R.: Anatomy of the Akhmediev breather: cascading instability, first formation time, and Fermi-Pasta-Ulam recurrence. Phys. Rev. E 92, 063202 (2015)

    MathSciNet  Google Scholar 

  39. Zhu, Q., Lin, F., Li, H., Hao, R.: Human-autonomous devices for weak signal detection method based on multimedia chaos theory. J. Ambient Intell. Human. Comput (2020). https://doi.org/10.1007/s12652-020-02270-x

  40. Gupta, V., Mittal, M.: QRS Complex Detection Using STFT, Chaos Analysis, and PCA in Standard and Real-Time ECG Databases. J. Inst. Eng. India Ser. B 100, 489–497 (2019)

    Google Scholar 

  41. Gupta, V., Mittal, M., Mittal, V.: R-peak detection based chaos analysis of ECG signal. Analog Integr. Circ. Sig. Process 102, 479–490 (2020)

    Google Scholar 

  42. Gupta, V., Mittal, M.: A novel method of cardiac arrhythmia detection in electrocardiogram signal. Int. J. Med. Eng. Inf. 12, (5) (2020)

  43. Gupta, V., Mittal, M., Mittal, V.: R-Peak Detection Using Chaos Analysis in Standard and Real Time ECG Databases. IRBM 40, 341–354 (2019)

    Google Scholar 

  44. Gupta, V., Mittal, M., Mittal, V., Saxena, N.K.: BP signal analysis using emerging techniques and its validation using ECG Signal. Sens. Imag. 22, 25 (2021)

    Google Scholar 

  45. Gupta, V., Mittal, M., Mittal, V.: Chaos theory and ARTFA: emerging tools for interpreting ECG signals to diagnose cardiac arrhythmias. Wireless Pers. Commun. 118, 3615–3646 (2021)

    Google Scholar 

  46. Fleischhauer, M., Imamoglu, A., Marangos, J.P.: Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005)

    Google Scholar 

  47. Nikolić, S.N., Radonjić, M., Krmpot, A.J., Lučić, N.M., Zlatković, B.V., Jelenković, B.M.: Effects of a laser beam profile on Zeeman electromagnetically induced transparency in the Rb buffer gas cell. J. Phys. B: At. Mol. Opt. Phys. 46, 075501 (2013)

    Google Scholar 

  48. Krmpot, A.J., Ćuk, S.M., Nikolić, S.N., Radonjić, M., Slavov, D.G., Jelenković, B.M.: Dark Hanle resonances from selected segments of the Gaussian laser beam cross-section. Opt. Express 17, 22491–22498 (2009)

    Google Scholar 

  49. Li, Z.-Y., Li, F.-F., Li, H.-J.: Exciting rogue waves, breathers, and solitons in coherent atomic media. Commun. Theor. Phys. 72, 075003 (2020)

    MathSciNet  MATH  Google Scholar 

  50. Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Rogue wave triplets. Phys. Lett. A 375, 2782 (2011)

    MATH  Google Scholar 

  51. Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Triangular rogue wave cascades. Phys. Rev. E 86, 056602 (2012)

    Google Scholar 

  52. Dubard, P., Gaillard, P., Klein, C., Matveev, V.B.: On multi-rogue wave solutions of the NLS equation and positon solutions of the KdV equation. Eur. Phys. J. Special Topics 185, 247 (2010)

    Google Scholar 

  53. Ohta, Y., Yang, J.: General high-order rogue waves and their dynamics in the nonlinear Schrödinger equation. Proc. R. Soc. A 468, 1716 (2012)

    MathSciNet  MATH  Google Scholar 

  54. Gaillard, P.: Degenerate determinant representation of solutions of the nonlinear Schrödinger equation, higher order Peregrine breathers and multi-rogue waves. J. Math. Phys. 54, 013504 (2013)

    MathSciNet  MATH  Google Scholar 

  55. Ankiewicz, A., Akhmediev, N.: Multi-rogue waves and triangular numbers. Roman. Rep. Phys. 69, 104 (2017)

    Google Scholar 

  56. He, J.S., Zhang, H.R., Wang, L.H., Porsezian, K., Fokas, A.S.: Generating mechanism for higher-order rogue waves. Phys. Rev. E 87, 052914 (2013)

    Google Scholar 

  57. Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Classifying the hierarchy of nonlinear-Schrödinger-equation rogue-wave solutions. Phys. Rev. E 88, 013207 (2013)

    Google Scholar 

  58. Akhmediev, N.: Waves that appear from nowhere: complex rogue wave structures and their elementary particles. Front. Phys. 8, 612318 (2021)

    Google Scholar 

  59. Hu, W., Wang, Z., Zhao, Y., Deng, Z.: Symmetry breaking of infinite-dimensional dynamic system. Appl. Math. Letts. 103, 106207 (2020)

    MathSciNet  MATH  Google Scholar 

  60. Hu, W., Huai, Y., Xu, M., Feng, X., Jiang, R., Zheng, Y., Deng, Z.: Mechanoelectrical flexible hub-beam model of ionic-type solvent-free nanofluids. Mech. Syst. Signal Process. 159, 107833 (2021)

    Google Scholar 

  61. Hu, W., Xu, M., Song, J., Gao, Q., Deng, Z.: Coupling dynamic behaviors of flexible stretching hub-beam system. Mech. Syst. Signal Process. 151, 107389 (2021)

    Google Scholar 

  62. Hu, W., Zhang, C., Deng, Z.: Vibration and elastic wave propagation in spatial flexible damping panel attached to four special springs. Commun. Nonlinear. Sci. Numer. Simulat. 84, 105199 (2020)

    MathSciNet  MATH  Google Scholar 

  63. Hu, W., Ye, J., Deng, Z.: Internal resonance of a flexible beam in a spatial tethered system. J. Sound Vib. 45, 115286 (2020)

    Google Scholar 

  64. Hu, W., Xu, M., Jiang, R., Zhang, C., Deng, Z.: Wave propagation in non-homogeneous asymmetric circular plate. Int. J. Mech. Mater. Des. (2021). https://doi.org/10.1007/s10999-021-09556-8

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the Qatar National Research Fund (a member of Qatar Foundation). S.N.N. acknowledges funding provided by the Institute of Physics Belgrade, through the grant by the Ministry of Education, Science, and Technological Development of the Republic of Serbia. S.A. is supported by the Embassy of Libya in the Republic of Serbia. O.A.A. is supported by the Berkeley Graduate Fellowship and the Anselmo J. Macchi Graduate Fellowship. N.B.A. acknowledges support from Project No. 18-11-00247 of the Russian Science Foundation. M.R.B. acknowledges support by the Al-Sraiya Holding Group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanko N. Nikolić.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nikolić, S.N., Alwashahi, S., Ashour, O.A. et al. Multi-elliptic rogue wave clusters of the nonlinear Schrödinger equation on different backgrounds. Nonlinear Dyn 108, 479–490 (2022). https://doi.org/10.1007/s11071-021-07194-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-07194-5

Keywords

  • Nonlinear Schrödinger equation
  • Rogue waves
  • Circular and triangular rogue wave clusters
  • Darboux transformation