Skip to main content
Log in

A fast and efficient multiple images encryption based on single-channel encryption and chaotic system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A multiple-image encryption algorithm based on single-channel scrambling, diffusion and chaotic system is presented in this paper. The initial values of the chaotic system are associated with the pixel values of each set of encrypted images as the key for each set of image encryption. The pseudo-random sequences and matrixes generated by the chaotic system are obtained by the corresponding keys, and then, the whole set of images are fused across-image and transferred from the RGB channel to the HSV channel after fusion. For single-channel encryption, select one of the HSV channels is extracted and encryption operations of scrambling and diffusion are performed. The index sequences generated by the chaotic sequences with zero frequency shifting rearrange the pixel positions of the encrypted channel. Combining data splitting, stack storage, and chaotic matrixes, the diffusion operation is achieved. Analyses of the performance show that the algorithm has both excellent encryption speed and security performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability Statement

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Chen, L.-P., Yin, H., Yuan, L.-G., Lopes, A.M., Machado, J.A.T., Wu, R.-C.: A novel color image encryption algorithm based on a fractional-order discrete chaotic neural network and DNA sequence operations. Front. Inform. Technol. Elect. Eng. 21(6), 866–879 (2020). https://doi.org/10.1631/fitee.1900709

    Article  Google Scholar 

  2. Chen, Y., Tang, C., Ye, R.: Cryptanalysis and improvement of medical image encryption using high-speed scrambling and pixel adaptive diffusion. Signal Process. 167, 107286 (2020). https://doi.org/10.1016/j.sigpro.2019.107286

    Article  Google Scholar 

  3. Chai, X., Wu, H., Gan, Z., Zhang, Y., Chen, Y., Nixon, K.W.: An efficient visually meaningful image compression and encryption scheme based on compressive sensing and dynamic LSB embedding. Opt. Lasers Eng. 124, 105837 (2020). https://doi.org/10.1016/j.optlaseng.2019.105837

    Article  Google Scholar 

  4. Luo, Y., Tang, S., Liu, J., Cao, L., Qiu, S.: Image encryption scheme by combining the hyper-chaotic system with quantum coding. Opt. Lasers Eng. 124, 105836 (2020). https://doi.org/10.1016/j.optlaseng.2019.105836

    Article  Google Scholar 

  5. Huang, L., Wang, S., Xiang, J., Sun, Y.: Chaotic color image encryption scheme using deoxyribonucleic acid (DNA) coding calculations and arithmetic over the galois field. Math. Probl. Eng. 2020, 3965281 (2020). https://doi.org/10.1155/2020/3965281

    Article  Google Scholar 

  6. Wang, X., Ren, Q., Jiang, D.: An adjustable visual image cryptosystem based on 6D hyperchaotic system and compressive sensing. Nonlinear Dyn. 104, 4543–4567 (2021). https://doi.org/10.1007/s11071-021-06488-y

    Article  Google Scholar 

  7. Teng, L., Wang, X., Yang, F., Xian, Y.: Color image encryption based on cross 2D hyperchaotic map using combined cycle shift scrambling and selecting diffusion. Nonlinear Dyn. 105, 1859–1876 (2021). https://doi.org/10.21203/rs.3.rs-247406/v1

    Article  Google Scholar 

  8. Zh, A., Kz, A., Yl, B., Yz, C.: Visually secure image encryption using adaptive-thresholding sparsification and parallel compressive sensing: ScienceDirect. Signal Process. 183, 107998 (2021). https://doi.org/10.1016/j.sigpro.2021.107998

    Article  Google Scholar 

  9. Cao, C., Sun, K., Liu, W.: A novel bit-level image encryption algorithm based on 2D-LICM hyperchaotic map. Signal Process. 143, 122–133 (2018). https://doi.org/10.1016/j.sigpro.2017.08.020

    Article  Google Scholar 

  10. Yin, Z., She, X., Tang, J., Luo, B.: Reversible data hiding in encrypted images based on pixel prediction and multi-MSB planes rearrangement. Signal Process. 187, 108146 (2021). https://doi.org/10.1016/j.sigpro.2021.108146

    Article  Google Scholar 

  11. Zhang, X., Wang, X.: Multiple-image encryption algorithm based on DNA encoding and chaotic system. Multimedia Tools Appl. 78, 7841–7869 (2018). https://doi.org/10.1007/s11042-018-6496-1

    Article  Google Scholar 

  12. Abuturab, M.R.: A superposition based multiple-image encryption using Fresnel–Domain high dimension chaotic phase encoding. Opt. Lasers Eng. 129, 106038 (2020). https://doi.org/10.1016/j.optlaseng.2020.106038

    Article  Google Scholar 

  13. Huang, Z.-J., Cheng, S., Gong, L.-H., Zhou, N.-R.: Nonlinear optical multi-image encryption scheme with two-dimensional linear canonical transform. Opt. Lasers Eng. 124, 105821 (2020). https://doi.org/10.1016/j.optlaseng.2019.105821

    Article  Google Scholar 

  14. He, Y., Zhang, Y.-Q., Wang, X.-Y.: A new image encryption algorithm based on two-dimensional spatiotemporal chaotic system. Neural Comput. Appl. 32, 247–260 (2018). https://doi.org/10.1007/s00521-018-3577-z

    Article  Google Scholar 

  15. Li, P., Xu, J., Mou, J., Yang, F.: Fractional-order 4D hyperchaotic memristive system and application in color image encryption. EURASIP J. Image Video Process. (2019). https://doi.org/10.1186/s13640-018-0402-7

    Article  Google Scholar 

  16. Ma, C., Mou, J., Xiong, L., Banerjee, S., Liu, T., Han, X.: Dynamical analysis of a new chaotic system: asymmetric multistability, offset boosting control and circuit realization. Nonlinear Dyn. 103, 2867–2880 (2021)

    Article  Google Scholar 

  17. García-Guerrero, E.E., Inzunza-González, E., López-Bonilla, O.R., Cárdenas-Valdez, J.R., Tlelo-Cuautle, E.: Randomness improvement of chaotic maps for image encryption in a wireless communication scheme using PIC-microcontroller via Zigbee channels. Chaos Solitons Fract. (2020). https://doi.org/10.1016/j.chaos.2020.109646

    Article  MathSciNet  Google Scholar 

  18. Hua, Z., Zhu, Z., Yi, S., Zhang, Z., Huang, H.: Cross-plane colour image encryption using a two-dimensional logistic tent modular map. Inf. Sci. 546, 1063–1083 (2021). https://doi.org/10.1016/j.ins.2020.09.032

    Article  MathSciNet  Google Scholar 

  19. Farah, M.A.B., Farah, A., Farah, T.: An image encryption scheme based on a new hybrid chaotic map and optimized substitution box. Nonlinear Dyn. 99(1), 3041–3064 (2019). https://doi.org/10.1007/s11071-019-05413-8

    Article  MATH  Google Scholar 

  20. Liu, T., Banerjee, S., Yan, H., Mou, J.: Dynamical analysis of the improper fractional-order 2D-SCLMM and its DSP implementation. Eur. Phys. J. Plus 136, 506 (2021). https://doi.org/10.1016/10.1140/epjp/s13360-021-01503-y

    Article  Google Scholar 

  21. Chen, H., Liu, Z., Tanougast, C., Liu, F., Blondel, W.: A novel chaos based optical cryptosystem for multiple images using DNA-blend and gyrator transform. Opt. Lasers Eng. (2021). https://doi.org/10.1016/j.optlaseng.2020.106448

    Article  Google Scholar 

  22. Ma, C., Mou, J., Li, P., Liu, T.: Dynamic analysis of a new two-dimensional map in three forms: integer-order, fractional-order and improper fractional-order. Eur. Phys. J. Spec. Top. 230, 1945–1957 (2021). https://doi.org/10.1140/epjs/s11734-021-00133-w

    Article  Google Scholar 

  23. Li, X., Mou, J., Xiong, L., Wang, Z., Xu, J.: Fractional-order double-ring erbium-doped fiber laser chaotic system and its application on image encryption. Opt. Laser Technol. 140, 107074 (2021). https://doi.org/10.1016/j.optlastec.2021.107074

    Article  Google Scholar 

  24. Li, H., Hua, Z., Bao, H., Zhu, L., Chen, M., Bao, B.: Two-dimensional memristive hyperchaotic maps and application in secure communication. IEEE Trans. Ind. Electron. 68(10), 9931–9940 (2021). https://doi.org/10.1109/tie.2020.3022539

    Article  Google Scholar 

  25. Chai, X., Bi, J., Gan, Z., Liu, X., Zhang, Y., Chen, Y.: Color image compression and encryption scheme based on compressive sensing and double random encryption strategy. Signal Process. 176, 107684 (2020). https://doi.org/10.1016/j.sigpro.2020.107684

    Article  Google Scholar 

  26. Chen, C., Sun, K., He, S.: An improved image encryption algorithm with finite computing precision. Signal Process. 168, 107340 (2020). https://doi.org/10.1016/j.sigpro.2019.107340

    Article  Google Scholar 

  27. Hou, W., Li, S., He, J., Ma, Y.: A novel image-encryption scheme based on a non-linear cross-coupled hyperchaotic system with the dynamic correlation of plaintext pixels. Entropy (Basel) 22, 779–799 (2020). https://doi.org/10.3390/e22070779

    Article  MathSciNet  Google Scholar 

  28. Ye, G., Pan, C., Dong, Y., Shi, Y., Huang, X.: Image encryption and hiding algorithm based on compressive sensing and random numbers insertion. Signal Process. 172, 107563 (2020). https://doi.org/10.1016/j.sigpro.2020.107563

    Article  Google Scholar 

  29. Yousif, B., Khalifa, F., Makram, A., Takieldeen, A.: A novel image encryption/decryption scheme based on integrating multiple chaotic maps. AIP Adv. (2020). https://doi.org/10.1063/5.0009225

    Article  Google Scholar 

  30. Zhao, C.-F., Ren, H.-P.: Image encryption based on hyper-chaotic multi-attractors. Nonlinear Dyn. 100, 679–698 (2020). https://doi.org/10.1007/s11071-020-05526-5

    Article  Google Scholar 

  31. Xian, Y., Wang, X.: Fractal sorting matrix and its application on chaotic image encryption. Inf. Sci. 547, 1154–1169 (2021). https://doi.org/10.1016/j.ins.2020.09.055

    Article  MathSciNet  MATH  Google Scholar 

  32. Liu, S., Li, C., Hu, Q.: Cryptanalyzing two image encryption algorithms based on a first-order time-delay system. IEEE MultiMedia (2020). https://doi.org/10.1109/MMUL.2021.3114589

    Article  Google Scholar 

  33. Zhang, L., Zhang, X.: Multiple-image encryption algorithm based on bit planes and chaos. Multimedia Tools Appl. 79, 20753–20771 (2020). https://doi.org/10.1007/s11042-020-08835-4

    Article  Google Scholar 

  34. Li, Y., Zhang, F., Li, Y., Tao, R.: Asymmetric multiple-image encryption based on the cascaded fractional Fourier transform. Opt. Lasers Eng. 72, 18–25 (2015). https://doi.org/10.1016/j.optlaseng.2015.03.027

    Article  Google Scholar 

  35. Zhang, X., Wang, X.: Multiple-image encryption algorithm based on mixed image element and chaos. Comput. Elect. Eng. 000, 1–13 (2017). https://doi.org/10.1016/j.compeleceng.2016.12.025

    Article  Google Scholar 

  36. Hu, K.Y., Wu, C., Wang, Y., Wang, J., Wang, Q.H.: An asymmetric multi-image cryptosystem based on cylindrical diffraction and phase truncation. Opt. Commun. 449, 100–109 (2019). https://doi.org/10.1016/j.optcom.2019.05.041

    Article  Google Scholar 

  37. Mosso, E., Suárez, O., Bolognini, N.: Asymmetric multiple-image encryption system based on a chirp z-transform. Appl. Opt. 58(21), 5674–5680 (2019). https://doi.org/10.1364/AO.58.005674

    Article  Google Scholar 

  38. Wang, X., Liu, C., Jiang, D.: A novel triple-image encryption and hiding algorithm based on chaos, compressive sensing and 3D DCT. Inf. Sci. 574, 505–527 (2021). https://doi.org/10.1016/j.ins.2021.06.032

    Article  MathSciNet  Google Scholar 

  39. Ma, X., Mou, J., Liu, J., Ma, C., Yang, F., Zhao, X.: A novel simple chaotic circuit based on memristor-memcapacitor. Nonlinear Dyn. 100, 2859–2876 (2020). https://doi.org/10.1007/s11071-020-05601-x

    Article  Google Scholar 

  40. Zhou, M., Wang, C.: A novel image encryption scheme based on conservative hyperchaotic system and closed-loop diffusion between blocks. Signal Process. 171, 107484 (2020). https://doi.org/10.1016/j.sigpro.2020.107484

    Article  Google Scholar 

  41. Wang, X., Wang, Y., Zhu, X., Luo, C.: A novel chaotic algorithm for image encryption utilizing one-time pad based on pixel level and DNA level. Opt. Lasers Eng. 125, 105851 (2020). https://doi.org/10.1016/j.optlaseng.2019.105851

    Article  Google Scholar 

  42. Guesmi, R., Farah, M.: A new efficient medical image cipher based on hybrid chaotic map and DNA code. Multimedia Tools Appl. (2021). https://doi.org/10.1007/s11042-020-09672-1

    Article  Google Scholar 

  43. Shafique, A., Ahmed, F.: Image encryption using dynamic S-box substitution in the wavelet domain. Wireless Pers. Commun. 115(4), 2243–2268 (2020). https://doi.org/10.1007/s11277-020-07680-w

    Article  Google Scholar 

  44. Naskar, P.K., Bhattacharyya, S., Nandy, D., Chaudhuri, A.: A robust image encryption scheme using chaotic tent map and cellular automata. Nonlinear Dyn. 100(3), 2877–2898 (2020). https://doi.org/10.1007/s11071-020-05625-3

    Article  Google Scholar 

  45. Gong, L., Qiu, K., Deng, C., Zhou, N.: An optical image compression and encryption scheme based on compressive sensing and RSA algorithm. Opt. Lasers Eng. 121, 169–180 (2019). https://doi.org/10.1016/j.optlaseng.2019.03.006

    Article  Google Scholar 

  46. Gong, L., Qiu, K., Deng, C., Zhou, N.: An image compression and encryption algorithm based on chaotic system and compressive sensing. Opt. Laser Technol. 115, 257–267 (2019). https://doi.org/10.1016/j.optlastec.2019.01.039

    Article  Google Scholar 

  47. Yue, W., Noonan, J.P., Agaian, S.: NPCR and UACI randomness tests for image encryption. Cyber J. Multidiscip. J. Sci. Technol. J. Select. Areas Telecommun. 1(2), 31–38 (2011)

    Google Scholar 

  48. Chai, X., Zhang, J., Gan, Z., Zhang, Y.: Medical image encryption algorithm based on Latin square and memristive chaotic system. Multimedia Tools Appl. 78, 35419–35453 (2019). https://doi.org/10.1007/s11042-019-08168-x

    Article  Google Scholar 

  49. Gao, X., Yu, J., Banerjee, S., Yan, H., Mou, J.: A new image encryption scheme based on fractional-order hyperchaotic system and multiple image fusion. Sci. Rep. 11, 15737 (2021). https://doi.org/10.1038/s41598-021-94748-7

    Article  Google Scholar 

  50. Niu, Y., Zhang, X.: A novel plaintext-related image encryption scheme based on chaotic system and pixel permutation. IEEE Access 8, 22082–22093 (2020). https://doi.org/10.1109/access.2020.2970103

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 62061014); The Natural Science Foundation of Liaoning Province (2020-MS-274); The Basic Scientific Research Projects of Colleges and Universities of Liaoning Province (Grant Nos. LJKZ0545)

Author information

Authors and Affiliations

Authors

Contributions

Xinyu Gao designed and carried out experiments, data analyzed and manuscript wrote. Jun Mou and Yinghong Cao made the theoretical guidance for this paper. Yuwen Sha, Huizhen Yan and Li Xiong improved the algorithm. All authors reviewed the manuscript.

Corresponding author

Correspondence to Jun Mou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Mou, J., Xiong, L. et al. A fast and efficient multiple images encryption based on single-channel encryption and chaotic system. Nonlinear Dyn 108, 613–636 (2022). https://doi.org/10.1007/s11071-021-07192-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-07192-7

Keywords

Navigation