Skip to main content

Advertisement

Log in

An environmental selection and transfer learning-based dynamic multiobjective optimization evolutionary algorithm

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In recent years, the dynamic multiobjective optimization problems (DMOPs), whose major strategy is to track the varying PS (Pareto Optimal Solution, PS) and/or PF (Pareto Optimal Frontier), caused a great deal of attention worldwide. As a promising solution, reusing of “experiences” to establish a prediction model is proved to be very useful and widely used in practice. However, most existing methods overlook the importance of environmental selection in the evolutionary processes. In this paper, we propose a dynamic multiobjective optimal evolutionary algorithm which is based on environmental selection and transfer learning (DMOEA-ESTL). This strategy makes full use of the environmental selection and transfer learning techniques to generate individuals for a new environment by reusing the experience to maintain the diversity of the population and speed up the evolutionary process. As experimental validation, we embed this new scheme in the NSGA-II (non-dominated sorting genetic algorithm). We test the proposed algorithm with the help of six benchmark functions as well as compare it with the other two prediction based strategies FPS (Forward-looking Prediction Strategy, FPS) and PPS (Population Prediction Strategy, PPS). The experimental results testify that the proposed strategy can deal with the DMOPs effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and material

The datasets used in this paper are available from the corresponding author on reasonable request.

References

  1. Jiao, R., Zeng, S., Li, C., Pedrycz, W.:Evolutionary constrained multi-objective optimization using NSGA-II with dynamic constraint handling. In: 2019 IEEE Congress on Evolutionary Computation (CEC). IEEE (2019)

  2. Abello, M.B., Bui, L.T., Michalewicz, Z.:An adaptive approach for solving dynamic scheduling with time-varying number of tasks-Part II. In: 2011 IEEE Congress of Evolutionary Computation (CEC). IEEE (2011)

  3. Ma, X., Yang, J., Sun, H., Hu, Z., Wei, L.: Multiregional co-evolutionary algorithm for dynamic multiobjective optimization. Inf. Sci. 545, 1–24 (2020)

    Article  MathSciNet  Google Scholar 

  4. Tang, J., Alam, S., Lokan, C., Abbass, H.A.: A multi-objective evolutionary method for dynamic airspace re-sectorization using sectors clipping and similarities. In: 2012 IEEE Congress on Evolutionary Computation. IEEE (2012)

  5. Cao, L., Xu, L., Goodman, E.D., Li, H.: Decomposition-based evolutionary dynamic multiobjective optimization using a difference model. Appl. Soft Comput. 76, 473–490 (2019)

    Article  Google Scholar 

  6. Bui, L.T., Michalewicz, Z.: An evolutionary multi-objective approach for dynamic mission planning. In: Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2010. Barcelona, Spain. IEEE (2010)

  7. Curtis, S.K., Mattson, C.A., Hancock, B.J.: Divergent exploration in design with a dynamic multiobjective optimization formulation. Struct. Multidiscip. Optim. 47(5), 645–657 (2013)

    Article  MathSciNet  Google Scholar 

  8. Jun, H., Liqian, X., Cong-Cong, X., Qiang, D.: A novel bioinspired multiobjective optimization algorithm for designing wireless sensor networks in the internet of things. J. Sens. 2015, 1–16 (2015)

    Google Scholar 

  9. Macedo, L.L., Godinho, P., Alves, M.J.: Mean-semivariance portfolio optimization with multiobjective evolutionary algorithms and technical analysis rules. Expert Syst. Appl. 79, 33–43 (2017)

    Article  Google Scholar 

  10. Zhang, Z.: Multiobjective optimization immune algorithm in dynamic environments and its application to greenhouse control. Appl. Soft Comput. J. 8(2), 959–971 (2008)

    Article  Google Scholar 

  11. Kim, K., Mckay, R., Moon, B.R.: Multiobjective evolutionary algorithms for dynamic social network clustering. In: Genetic & Evolutionary Computation Conference, p.1179. DBLP (2010)

  12. Linnala, M.: Bi-level optimization for a dynamic multiobjective problem. Eng. Optim. 44(2), 195–207 (2012)

    Article  Google Scholar 

  13. Fogel, L.J.,Owens, A.J.: Artificial intelligence through simulated evolution. Biophys. Cybern. Syst. (1966)

  14. Liu, R., Yang, P., Liu, J.: A dynamic multi-objective optimization evolutionary algorithm for complex environmental changes. Knowl.-Based Syst. 2, 106612 (2021)

    Article  Google Scholar 

  15. Yang, S., Nguyen, T.T., Li, C.: Evolutionary dynamic optimization: test and evaluation environments. In: Evolutinary Computation for Dynamic Optimization Problems, pp. 3–37 (2013)

  16. Rong, M., Gong, D., Pedrycz, W., Wang, L.: A multi-model prediction method for dynamic multi-objective evolutionary optimization. IEEE Trans. Evol. Comput. 24(2), 290–304 (2019)

    Article  Google Scholar 

  17. Zhou, A., Qu, B.Y., Li, H., Zhao, S.Z., Suganthan, P.N., Zhang, Q.: Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evol. Comput. 1(1), 32–49 (2011)

    Article  Google Scholar 

  18. Cheng, R., Jin, Y., Narukawa, K., Sendhoff, B.: A multiobjective evolutionary algorithm using gaussian process-based inverse modeling. IEEE Trans. Evol. Comput. 19(6), 838–856 (2015)

    Article  Google Scholar 

  19. Ou, J., Zheng, J., Gan, R., et al.: A pareto-based evolutionary algorithm using decomposition and truncation for dynamic multi-objective optimization. Appl. Soft Comput. 85, 105673 (2019)

    Article  Google Scholar 

  20. Hang, X., Zeng, W., Zeng, X., et al.: An evolutionary algorithm based on minkowski distance for many-objective optimization. IEEE Trans. Cybern. 49(11), 3968–3979 (2019)

    Article  Google Scholar 

  21. Alyafeai, Z., Alshaibani, M.S., Ahmad, I.: A survey on transfer learning in natural language processing, 1–19 (2020)

  22. Hatzakis, I., Wallace, D.: Dynamic multi-objective optimization with evolutionary algorithms: a forward-looking approach. In: Conference on Genetic & Evolutionary Computation. ACM (2006)

  23. Von Lücken, C., Barán, B., Brizuela, C.: A survey on multi-objective evolutionary algorithms for many-objective problems. Comput. Optim. Appl. 58, 707–756 (2104)

  24. Zhou, A., Jin, Y., Zhang, Q.: A population prediction strategy for evolutionary dynamic multiobjective optimization. IEEE Trans. Cybern. 44(1), 40–53 (2013)

    Article  Google Scholar 

  25. Wei, J., & Zhang, M.: Simplex model based evolutionary algorithm for dynamic multi-objective optimization. In: International Conference on Advances in Artificial Intelligence. Springer-Verlag (2011)

  26. Liu, M.: Memory enhanced dynamic multi-objective evolutionary algorithm based on decomposition. J. Softw. 24(7), 1571–1588 (2014)

    Article  Google Scholar 

  27. Azzouz, R.: A multiple reference point-based evolutionary algorithm for dynamic multi-objective optimization with undetectable changes. In: 2014 IEEE Congress on Evolutionary Computation (CEC). IEEE (2014)

  28. Rambabu, R., Vadakkepat, P., Tan, K.C., et al.: A mixture-of-experts prediction framework for evolutionary dynamic multiobjective optimization. IEEE Trans. Cybern. 50(12), 5099–5112 (2019)

    Article  Google Scholar 

  29. Jiang, M., Hu, W., Qiu, L., Shi, M.,Tan, K.C.: Solving dynamic multi-objective problems via support vector machine. In: 2019 IEEE Congress on Evolutionary Computation (CEC) (2019)

  30. Jiang, S., Yang, S.: A steady-state and generational evolutionary algorithm for dynamic multi-objective optimization. IEEE Trans. Evol. Comput. 21(1), 65–82 (2017)

    Article  Google Scholar 

  31. Liu, R., Zhang, W., Jiao, L., Liu, F.,Ma, J.: A sphere-dominance based preference immune-inspired algorithm for dynamic multiobjective optimization. In: Proc. GECCO (2011)

  32. Jiang, S., Yang, S.: Evolutionary dynamic multiobjective optimization: benchmarks and algorithm comparisons. IEEE Trans. Cybern. 47(1), 198–211 (2016)

    Article  Google Scholar 

  33. Chun’An, L., Yuping, W.: Multiobjective evolutionary algorithm for dynamic nonlinear constrained optimization problems. Syst. Eng. Electron. 20(1), 204–210 (2009)

    Google Scholar 

  34. Jiang, S., Yang, S.: A steady-state and generational evolutionary algorithm for dynamic multiobjective optimization. IEEE Trans. Evol. Comput. 21(1), 65–82 (2017)

    Article  Google Scholar 

  35. Chen, J., Lin, Q., Zhen, J.: A hybrid immune multiobjective optimization algorithm. Eur. J. Oper. Res. 204(2), 294–302 (2011)

    Article  MathSciNet  Google Scholar 

  36. Wei, J., Wang, Y.: Hyper rectangle search based particle swarm algorithm for dynamic constrained multi-objective optimization problems. In: Evolutionary Computation. IEEE (2012)

  37. Yang, M., Kang, L., Guan, J.: Multi-algorithm co-evolution strategy for Dynamic Multi-Objective TSP. In: IEEE Congress on Evolutionary Computation. IEEE (2008)

  38. Wang, P., Tong, X.: A dimension convergence-based evolutionary algorithm for many-objective optimization problems. IEEE Access 8, 224631–322464 (2020)

    Article  Google Scholar 

  39. Azevedo, C.R.B., Araújo. A.F.: Generalized immigration schemes for dynamic evolutionary multiobjective optimization. In: 2011 IEEE Congress of Evolutionary Computation (CEC). IEEE (2011)

  40. Wang, Y., Li, B.: Investigation of memory-based multi-objective optimization evolutionary algorithm in dynamic environment. In: 2009 IEEE Congress on Evolutionary Computation, pp. 630–637 (2009)

  41. Cámara, M., Ortega, J., de Toro, F.: Approaching dynamic multi-objective optimization problems by using parallel evolutionary algorithms. In: Advances in Multi-Objective Nature Inspired Computing. Springer, Berlin, Heidelberg (2010)

  42. Vinek, E., Beran, P.P., Schikuta, E.: A dynamic multi-objective optimization framework for selecting distributed deployments in a heterogeneous environment. Procedia Comput. Sci. 4, 166–175 (2011)

    Article  Google Scholar 

  43. Helbig, M., Engelbrecht, A.P.: Analyses of guide update approaches for vector evaluated particle swarm optimisation on dynamic multi-objective optimisation problems. In: 2012 IEEE Congress on Evolutionary Computation. IEEE (2012)

  44. Cámara, M., Ortega, J., de Toro, F.: A single front genetic algorithm for parallel multi-objective optimization in dynamic environments. Neurocomputing 72(16–18), 3570–3579 (2009)

    Article  Google Scholar 

  45. Li, K., Kwong, S., Deb, K.: A dual-population paradigm for evolutionary multiobjective optimization. Inf. Sci. 309, 50–72 (2015)

    Article  Google Scholar 

  46. Peng, Z., Zheng, J., Zou, J.: A population diversity maintaining strategy based on dynamic environment evolutionary model for dynamic multiobjective optimization. In: Evolutionary Computation. IEEE (2014)

  47. Gui, L., Lu Q., et al.: Improving transfer learning in cross lingual opinion analysis through negative transfer detection. In: International Conference on Knowledge Science, Engineering and Management, pp. 394–406 (2015)

  48. Gretton, A., Borgwardt, K.M., Rasch, M.J., Schlkopf, B., Smola, A.J.: A kernel method for the two-sample-problem. Adv. Neural. Inf. Process. Syst. 1, 513–520 (2007)

    Google Scholar 

  49. Jiang, M., Huang, Z., Qiu, L., Huang, W., Yen, G.G.: Transfer learning based dynamic multiobjective optimization algorithms. IEEE Trans. Evol. Comput. 2(4), 501–514 (2018)

    Article  Google Scholar 

  50. Smola, A., Gretton, A., Song, L., Schoelkopf, B.: A Hilbert space embedding for distributions. In: International Conference on Discovery Science, pp. 40–41. Springer, Berlin, Heidelberg (2007)

  51. Raquel, C., Xin, Y.: Dynamic multi-objective optimization: a survey of the state-of-the-art. In: Evolutionary computation for dynamic optimization problems. Springer, Berlin, Heidelberg (2013)

  52. Goh, C.K., Tan, K.C.: A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization. IEEE Press, USA (2009)

    Google Scholar 

  53. Helbig, M., Engelbrecht, A.: Benchmark functions for CEC 2015 special session and competition on dynamic multi-objective optimization. Dept. Comput. Sci. Univ. Pretoria Pretoria S. Afr. Rep. (2015)

  54. Zheng, J.H., Peng, Z., Zhou, J., Shen, R.M.: A prediction strategy based on guide-individual for dynamic multi-objective optimization. ACTA ELECTON. SIN. 43(9), 1816–1825 (2015)

    Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

For Conceptualization, QH and PR; methodology, all authors have contributed to the methodology presented in this article; validation, PR and ZX; formal analysis, QH; investigation, QH; resources, ZX; writing, all authors have contributed to writing of this article.

Corresponding author

Correspondence to Qiang He.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Q., Xiang, Z. & Ren, P. An environmental selection and transfer learning-based dynamic multiobjective optimization evolutionary algorithm. Nonlinear Dyn 108, 397–415 (2022). https://doi.org/10.1007/s11071-021-07180-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-07180-x

Keywords

Navigation